As apex predators with a regulating effect on interspecific competitors and prey demographics, monitoring of spotted hyaena (Crocuta crocuta) population trends can provide a reliable indicator of ecosystem health. However, the ability of current survey techniques to monitor carnivore densities effectively are increasingly questioned. This has led recent studies to advocate increased application of spatial capture-recapture (SCR) methods to estimate population density for large carnivores. We reviewed the literature regarding methods used to estimate population density for spotted hyaena since 2000. Our review found that SCR methods are underutilised for estimating spotted hyaena density, with only eight published studies (13% of articles assessed) using an SCR approach. Call-in surveys were the most frequently used method, featuring in 47% of studies. However, 63% of studies that used call-in surveys could not estimate a site-specific calibration index. The calibration index estimates the distance and rate at which the focal species responds to audio lures and, as response rates are impacted by site-specific ecological and environmental factors, studies that could not calibrate this index are likely inaccurate. Further application of SCR techniques will allow more robust estimation of spotted hyaena density, reducing uncertainty and potential overestimation that limit inference from existing survey methods.
Livestock guarding dogs (LGDs) are used across the world to reduce livestock depredation by free-ranging predatory wildlife. In doing so, they reduce the need for lethal predator control and are considered beneficial for conservation. However, LGDs might be perceived as predators by wildlife and induce a multitude of both positive and negative ecological effects. We conducted a literature review to evaluate the ecological effects of LGDs and found 56 publications reporting LGDs interacting with or affecting wildlife. Featuring in 77% of the publications, LGDs were widely reported to chase and kill wildlife, leading to species-specific behavioural responses. A total of 80 species were affected by LGDs, 11 of which are listed as Near Threatened or higher on the IUCN Red List. Of the affected species, 78% were non-target species, suggesting that any benefits arising from the use of LGDs likely occur simultaneously with unintended ecological effects. However, the frequency of LGD-wildlife interactions and the magnitude of any resulting ecological effects have rarely been quantified. Therefore, more empirical studies are needed to determine the net ecological outcome of LGD use, thereby ensuring that negative outcomes are minimised, while benefiting both farmers and wildlife.