Leaf-root interaction is a critical factor for plant growth during maturation and activity of roots is maintained by a sufficient supply of photosynthates. To explain photosynthate distribution among organs in field crops, the node unit hypothesis is proposed. One node unit consists of a leaf and an upper adventitous root, as well as the axillary organs and the lower adventitious root, which is adjacent to one node. Using 14C as tracer, the carbon distribution system has been clarified using spring wheat, soybean, tomato, and potato. The interrelationship among organs from the strongest to the weakest is in the following order: (1) within the node unit > (2) between the node unit in the same or adjacent phyllotaxy > (3) in the main root or apical organs, which are adjacent to the node unit. Within the node unit, 14C assimilated in the leaf on the main stem tended to distribute to axillary organs in the same node unit. The 14C assimilated in the leaf of axillary organs tended to distribute within the axillary organs, including adventitious roots in the axillary organ and then translocated to the leaf on the main leaf of the same node unit. In different organs of the node unit in the same or adjacent phyllotaxy, 14C assimilated in the leaf on the main stem was also distributed to the organs (node unit) belonging to the same phyllotaxy in dicotyledons, while in monocotyledons, the effect of phyllotaxy on 14C distribution was not clear. Among roots/apical organs and node unit, 14C assimilated in the upper node unit was distributed to apical organs and 14C assimilated in the lower node unit was distributed to roots. Thus the node unit hypothesis of photosynthate distribution among organs is very important for understanding the high productivity of field crops. and M. Osaki ... [et al.].
Red alga contains four extrinsic proteins in photosystem II (PSII), which are PsbO, PsbV, PsbU, and PsbQ′. Except for the PsbQ′, the composition is the same in cyanobacterial PSII. Reconstitution analysis of cyanobacterial PSII has shown that oxygen-evolving activity does not depend on the presence of PsbQ′. Recently, the structure of red algal PSII was elucidated. However, the role of PsbQ′ remains unknown. In this study, the function of the acceptor side of PSII was analyzed in PsbQ′-reconstituted PSII by redox titration of QA and thermoluminescence. The redox potential of QA was positively shifted when PsbQ′ was attached to the PSII. The positive shift of QA is thought to cause a decrease in the amount of triplet chlorophyll in PSII. On the basis of these results, we propose that PsbQ′ has a photoprotective function when irradiated with strong light., M. Yamada, R. Nagao, M. Iwai, Y. Arai, A. Makita, H. Ohta, T. Tomo., and Obsahuje bibliografické odkazy