Let $G\subset {\bf SU}(2,1)$ be a non-elementary complex hyperbolic Kleinian group. If $G$ preserves a complex line, then $G $ is $\mathbb {C}$-Fuchsian; if $ G $ preserves a Lagrangian plane, then $ G $ is $\mathbb {R}$-Fuchsian; $ G $ is Fuchsian if $ G $ is either $\mathbb {C}$-Fuchsian or $\mathbb {R}$-Fuchsian. In this paper, we prove that if the traces of all elements in $ G $ are real, then $ G $ is Fuchsian. This is an analogous result of Theorem V.G. 18 of B. Maskit, Kleinian Groups, Springer-Verlag, Berlin, 1988, in the setting of complex hyperbolic isometric groups. As an application of our main result, we show that $ G $ is conjugate to a subgroup of ${\bf S}(U(1)\times U(1,1))$ or ${\bf SO}(2,1)$ if each loxodromic element in $G $ is hyperbolic. Moreover, we show that the converse of our main result does not hold by giving a $\mathbb {C}$-Fuchsian group.
The aim of the paper is to discuss the extreme points of subordination and weak subordination families of harmonic mappings. Several necessary conditions and sufficient conditions for harmonic mappings to be extreme points of the corresponding families are established.