In order to evaluate effect of weedy rice on the photosynthesis and grain filling of cultivated rice, cultivated rice ‘Nanjing 44‘ was planted in the field under different densities of weedy rice ‘JS-Y1‘ for two years. The results showed that net photosynthetic rate (PN), net assimilation rate, grain filling rate, and the grain yield of cultivated rice all decreased with increasing weedy rice density. Furthermore, yield component analysis revealed that increasing weedy rice density had the most significant effect on the percentage of filled grains and the number of rice panicles. The correlation analyses indicated that the yield of cultivated rice was highly correlated with the net photosynthetic rate and the net assimilation rate. Our results illustrated that high density of weedy rice might cause yield losses in cultivated rice by inhibition of photosynthesis and grain filling., X. M. Xu, G. Li, Y. Su, X. L. Wang., and Obsahuje bibliografii
Photoprotection mechanisms protect photosynthetic organisms, especially under stress conditions, against photodamage that may inhibit photosynthesis. We investigated the effects of short-term immersion in hypo- and hypersalinity sea water on the photosynthesis and xanthophyll cycle in Sargassum fusiforme (Harvey) Setchell. The results indicated that under moderate light [110 μmol(photon) m-2 s-1], the effective quantum yield of PSII was not reduced in S. fusiforme fronds after 1 h in hyposalinity conditions, even in fresh water, but it was significantly affected by extreme hypersalinity treatment (90‰ sea water). Under high light [HL, 800 μmol(photon) m-2 s-1], photoprotective mechanisms operated efficiently in fronds immersed in fresh water as indicated by high reversible nonphotochemical quenching of chlorophyll fluorescence (NPQ) and de-epoxidation state; the quantum yield of PSII recovered during the subsequent relaxation period. In contrast, fronds immersed in 90‰ sea water did not withstand HL, barely developed reversible NPQ, and accumulated little antheraxanthin and zeaxanthin during HL, while recovery of the quantum yield of PSII was severely inhibited during the subsequent relaxation period. The data provided concrete evidence supporting the
short-term tolerance of S. fusiforme to immersion in fresh water compared to hypersalinity conditions. The potential practical implications of these results were also discussed., X. J. Xie, X. L. Wang, L. D. Lin, L. W. He, W. H. Gu, S. Gao, X. F. Yan, G. H. Pan, M. J. Wu, G. C. Wang., and Obsahuje seznam literatury