An n × n ray pattern A is called a spectrally arbitrary ray pattern if the complex matrices in Q(A) give rise to all possible complex polynomials of degree n. In a paper of Mei, Gao, Shao, and Wang (2014) was proved that the minimum number of nonzeros in an n×n irreducible spectrally arbitrary ray pattern is 3n-1. In this paper, we introduce a new family of spectrally arbitrary ray patterns of order n with exactly 3n - 1 nonzeros., Yinzhen Mei, Yubin Gao, Yanling Shao, Peng Wang., and Obsahuje seznam literatury