Hydrological monitoring in small headwater catchments provides the basis for examining complex interrelating hydraulic processes that govern the runoff generation. Contributions of different subsurface runoff mechanisms to the catchment discharge formation at two small forested headwater catchments are studied with the help of their natural isotopic signatures. The Uhlirska catchment (Jizera Mts., Czech Republic) is situated in headwater area of the Lusatian Neisse River. The catchment includes wetlands at the valley bottom developed over deluviofluvial granitic sediments surrounded by gentle hillslopes with shallow soils underlain by weathered granite. The Liz catchment (Bohemian Forest, Czech Republic) is situated in headwater area of the Otava River. It belongs to hillslope-type catchments with narrow riparian zones. The soil at Liz is developed on biotite paragneiss bedrock. The basic comparison of hydrological time series reveals that the event-related stream discharge variations at the Uhlirska catchment are bigger and significantly more frequent than at Liz. The analysis of isotope concentration data revealed different behavior of the two catchments during the major rainfall-runoff events. At Uhlirska, the percentage of the direct runoff formed by the event water reaches its maximum on the falling limb of the hydrograph. At Liz, the event water related fraction of the direct outflow is maximal on the rising limb of the hydrograph and then lowers. The hydraulic functioning of the Uhlirska catchment is determined by communication between hillslope and riparian zone compartments.
Temporal variability of the soil hydraulic properties is still an open issue. The present study deals with results of ponded infiltration experiments performed annually in a grid of permanent measurement points (18 spatial and 14 temporal replicates). Single ring infiltrometers were installed in 2003 at a meadow site in the Bohemian Forest highlands, the Czech Republic. The soil at the plot is coarse sandy loam classified as oligotrophic Eutric Cambisol. Soil water flow below infiltration rings has distinctly preferential character.
The results are marked with substantial interannual changes of observed infiltration rates. Considering just the results from the initial four years of the study, the temporal variability did not exceed the spatial variability detected in individual years. In later years, a shift to extremely high infiltration rates was observed. We hypothesize that it is related to structural changes of the soil profile possibly related to combined effect of soil biota activity, climatic conditions and experimental procedure. Interestingly, the temporal changes can partly be described as fluctuations between seemingly stable infiltration modes. This phenomenon was detected in the majority of rings and was found independent of the initial soil moisture conditions.
The interception was recognized as an important part of the catchment water balance in temperate climate. The mountainous forest ecosystem at experimental headwater catchment Liz has been subject of long-term monitoring. Unique dataset in terms of time resolution serves to determine canopy storage capacity and free throughfall. Spatial variability of throughfall was studied using one weighing and five tipping bucket rain gauges. The basic characteristics of forest affecting interception process were determined for the Norway spruce stand at the experimental area - the leaf area index was 5.66 - 6.00 m2 m-2, the basal area was 55.7 m2 ha-1, and the crown closure above individual rain gauges was between 19 and 95%. The total interception loss in both growing seasons analyzed was 34.5%. The mean value of the interception capacity determined was about 2 mm. Throughfall exhibited high variability from place to place and it was strongly affected by character of rainfall. On the other hand, spatial pattern of throughfall in average showed low variability.