In many insect species with a pupa covered by various "shells" (puparium, host remains, etc.) pupal-adult ecdysis and emergence to the open air represent two discrete steps. However, in Trichogramma, as well as in other insect parasitoids, these two processes have never been studied separately. We investigated the temporal pattern of pupal-adult ecdysis and of adult emergence from the host chorion in Trichogramma embryophagum Hartig (Hymenoptera: Trichogrammatidae) in laboratory conditions (12L : 12D, 20°C). Adult ecdysis was arrhythmic, while adult emergence showed a strong rhythmicity. The time lag between ecdysis and emergence varied from one to almost two days, depending on the circadian time of the ecdysis. The proportion of ecdysed adults that stayed in the host chorion ranged up to 60% (just before the highest peak of emergence). The cumulative percentage of ecdysed adults gradually increased with time, independently of whether the light was turned on in accordance with the entrained circadian rhythm or 4 h earlier. This arrhythmic ecdysis could be explained by the fact that the ecdysed adults get into a well protected space inside the host chorion and the timing of this event is adaptively neutral.
1_Maternal and grand-maternal photoperiodic responses of Trichogramma buesi, T. embryophagum, T. evanescens, T. piceum, T. principium, and T. telengai were investigated in laboratory conditions. During the experiment, grand-maternal and maternal generations developed at 20°C and one of the 4 photoperiodic regimes: L : D = 12 : 12, 14 : 10, 16 : 8, and 18 : 6 (in total, 16 combinations) while the progeny developed at L : D = 12 : 12 and one of the 3 thermal regimes: 13, 14, and 15°C. The proportion of diapausing individuals in the progeny of all the studied species was significantly dependent on the direct influence of temperature and on the maternal photoperiodic response. The influence of the photoperiodic conditions during development of the grand-maternal generation was statistically significant in 5 of the 6 studied species, being relatively weak in T. embryophagum and T. telengai, whose geographical ranges extend up to north-western regions of Europe (possibly, these wasps enter diapause so early that the grand-mothers of the diapausing generation develop under long day conditions). Comparative analysis showed that the thresholds of the maternal and grand-maternal photoperiodic responses coincided or almost coincided. The grand-maternal effect was stronger in the progeny of maternal females which developed under short day conditions than in those that developed under long day conditions. This pattern of interaction probably synchronizes the life cycle with seasonal changes because diapause is induced under decreasing day length and thus mothers of diapausing individuals develop at shorter daylength than do grand-mothers., 2_We conclude that the grand-maternal and the maternal effects on Trichogramma progeny diapause are based on one and the same photoperiodic response. In nature, the grand-maternal effect increases the proportion of diapausing individuals in the progeny of females which have developed under short day conditions during two generations, thus achieving a "cumulative" photoperiodic effect., Natalia D. Voinovich, Nina P. Vaghina, Sergey Ya. Reznik., and Obsahuje seznam literatury
At emergence females of Trichogramma had a lot of mature eggs in their ovaries, but some delayed parasitization or refused to parasitize a laboratory host. The effect of constant and alternating temperatures on the percentage of Trichogramma buesi females parasitizing Sitotroga cerealella eggs and the duration of the pre-parasitization period were investigated. The temperature dependencies of the rate of preimaginal development, pre-emergence survival, number of eggs laid daily, and total lifetime fecundity were also determined. As the temperature was increased from 12 to 35°C, the median pre-oviposition period decreased from 5 days to 3 h, with maximum values of 24 and 1.5 days, respectively. The rate of induction of parasitization (reciprocal of duration of the pre-parasitization period of the females that parasitized) increased with temperature like the rate of preimaginal development and average number of eggs laid daily by a parasitizing female. Total cumulative percentage of parasitizing females reached a maximum (ca 60%) at temperatures of 25-30°C, while at 12 and 35°C, respectively, 25 and 50% of females parasitized the S. cerealella eggs. Average lifetime fecundity and pre-emergence survival showed a similar dependence on temperature. The influence of the thermorhythm (25°C for 4 h and 15°C for 20 h) was strongly dependent on its position within the photoperiod. When thermophase coincided with photophase, the percentage of females that parasitized was close to that recorded at a constant temperature of 25°C. But when the high temperature pulse coincided with the dark period, the percentage of parasitizing females was the same as at 15°C. Thus, the temperature dependence of ethogenesis (supposedly, an increase in motivation to parasitize or search for a host) in Trichogramma females was similar to that of morphogenesis, although the reaction to alternating temperatures may have been complicated by interaction with the light : dark regime.