High CO2 concentrations (HC) in air induce partial deactivation of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO, EC 4.1.1.39). Under saturating irradiance, increase in [CO2] to 1 200 cm3 m-3 reduces the concentration of operating carboxylation centres by 20–30 %. At a further increase in [CO2], the activity remained on the same level. Under limiting irradiance, the lowest activity was reached at 600 cm3 (CO2) m-3. The presence of oxygen diminished deactivation, but O2 failed to stimulate reactivation under high CO2. Conditions that favour oxygenation of ribulose-1,5- bisphosphate (RuBP) facilitated reactivation. Even HC did not act as an inhibitor. HC induces deactivation of RuBPCO by increasing the concentration of free reaction centres devoid of the substrate, which are more vulnerable to inhibition than the centres filled with substrates or products. and J. Viil ... [et al.].
The specificity factor of Rubisco (S f) was estimated in intact leaves from the carboxylation of ribulose-1,5-bisphosphate (RuBP) at various CO2/O2 ratios. As oxygenation is calculated by the difference of the 14CO2 uptake by RuBP in the absence and presence of oxygen, it is important to choose the optimum CO2/O2 ratios. At high CO2 concentration (1,000 cm3 m-3 and higher) oxygenation consumes less than 50% RuBP but the difference of concentrations of CO2 at cell walls (Cw) and at the carboxylation centers (Cc) is 2-5% and the influence of mesophyll resistance
(rmd) is of minor importance. To accumulate large endogenous pool of RuBP, the leaves were preilluminated in the CO2- and
O2-free gas environments for 8 to 10 s. Thereafter the light was switched off and the leaves were flushed with the gas containing different concentrations of 14CO2 and O2. The specificity factor of Rubisco was calculated from the amount of the tracer taken up under different 14CO2/O2 ratios by the exhaustion of the RuBP pool. Application of 14CO2 allowed us to discriminate between the CO2 uptake and the concurrent respiratory CO2 release which proceeded at the expense of unlabelled intermediates., J. Viil, H. Ivanova, T. Pärnik., and Obsahuje bibliografii