Male production was examined in 70 Myzus persicae s.str and M. persicae nicotianae clonal lineages at 17°C and 10L : 14D. Sixty nine were characterised by a partial loss of sexuality (androcyclic producing few males, and intermediates producing some males and mating females), and one was found to be permanently parthenogenetic. High within and between lineage variation was detected. Most (81%) of the clonal lineages produced few males (0-5 males per parent) and only 6% had male production (10-16 males per parent) comparable to that (12-23 males per parent) of seven lineages with a sexual phase (holocyclic) which were examined under the same conditions. The length of prenatal exposure to 10L : 14D increased the production of males. Continuous rearing under 10L : 14D at 12°C adversely affected male production in another intermediate clonal lineage. Temperature was found to affect the production of sexuals and to modify the short day photoperiodic response. The production of males and mating females was higher at 12°C than at 17°C in most of the 20 aforementioned clonal lineages with a partial loss of sexuality. Six lineages were permanently parthenogenetic at 17°C, but two of them produced a few males and the other four a few males and mating females at 12°C. Seven lineages which produced a few males at 17°C, also produced some mating females at 12°C. Lastly, photoperiod similarly affected the production of sexuals in two of the aforementioned clonal lineages, one with a sexual phase and one intermediate, although the regimes for the peak of sexuals were different. In both lineages, however, males appeared in a 0.5-1 h shorter scotophase than mating females.
Morphometric variation of individuals in field collected samples of the Hyalopterus pruni complex from various Prunus species and regions of Greece was examined, to determine whether this variation is correlated with the host-trees from which the aphids originated. Morphometric data for 13 parameters of aphids from 74 field samples (760 adult apterae) were analysed by canonical variates analysis (CVA). Each sample was collected from a different tree and consisted of individuals from 2-3 neighbouring leaves from the same branch. Each field sample was used as a grouping factor in the CVA. The analysis produced three clusters corresponding to the taxa indicated by previous studies using allozyme markers (i.e., Hyalopterus pruni on apricot, blackthorn, plum and cherry, H. amygdali A on almond and H. amygdali B on peach). The separation was independent on the geographical origin of the samples. However, host associations within the complex were not absolute, and in particular the samples from apricot appeared to include both H. pruni and H. amygdali A. In contrast to previous views, the present study showed that the taxa have their own distinct morphology. Lastly, discriminant functions for separating the adult apterae of the taxa are given.