The brain and subesophageal ganglion (BR-SG) of the commercial silk worm, Bombyx mori, were stained immunohistochemically at the larval stage for circadian clock neurons with antibodies against Doubletime (DBT) of B. mori and Period (PER) of Periplaneta americana. The BR-SGs were also stained with antisera against [Arg7]-corazonin, which has been known to be present in B. mori and co-localized with PER in Manduca sexta, and against [His7]-corazonin, a homolog identified in other species. From co-localization of [Arg7]-corazonin and PER-like reactivities in the pars lateralis, [Arg7]-corazonin is suspected to be a downstream regulator of the circadian clock in M. sexta. DBT- and corazonin-like immunohistochemical reactivities were found in both the neurosecretory cells of the pars intercerebralis (PIC) and pars lateralis (PL) in B. mori. Small numbers of neurons shared both reactivities against anti-DBT and anti-corazonin. The majority of the immunopositive cells were common to both corazonins, but some cells were unique in expressing either reactivity against [His7]-corazonin or [Arg7]-corazonin only. The results suggest that there is a diversity in the clock output pathway among lepidopterans and that [His7]-corazonin may be present in B. mori, as well as [Arg7]-corazonin, although the former has not been chemically identified in this species. Corazonin may be a downstream regulator of circadian clocks in B. mori because of the co-localization of [His7]-corazonin at PIC and [Arg7]-corazonin at PL with anti-DBT.
Small GTPases of the Rab family act as essential regulators of vesicle transport pathways. Five Rab cDNA clones (BRab1, 7, 8, 11 and 14) from Bombyx mori were expressed in Escherichia coli as a thioredxin or glutathione sulfotransferase fusion protein. After purification, the fusion protein was tested for phosphorylation using protein kinase C (PKC). Results indicate that all of them were phosphorylated in vitro. The phosphorylation site of BRab1 was determined by mass-spectrometric analysis, which identified that Ser-17 of BRab1 was phosphorylated by PKC. Deletion and site-directed mutagenesis indicated that Ser-111of BRab8, in addition to Ser-17, was newly phosphorylated. Further immunohistochemical analysis using antibodies against Rab8 indicated that there are some Rab8 immunoreactive cells close to the neuropeptide secreting cells. This result suggests that in insects Rab proteins are regulated by phosphorylation and at least some of them are involved in neuropeptide secretion.