The focus of this paper is the application of the genetic programming
framework in the problem of knowledge discovery in databases, more precisely in the task of classification. Genetic programming possesses certain advantages that make it suitable for application in data mining, such as robustness of the algorithm or its convenient structure for rule generation to name a few. This study concentrates on one type of parallel genetic algorithms - cellular (diffusion) model. Emphasis is placed on the improvement of efficiency and scalability of the data mining algorithm, which could be achieved by integrating the algorithm with databases and employing a cellular framework. The cellular model of genetic programming that exploits SQL queries is implemented and applied to the classification task. The results achieve are presented and compared with other machine learning algorithms.