Distributivity of fuzzy implications over different fuzzy logic connectives have a very important role to play in efficient inferencing in approximate reasoning, especially in fuzzy control systems (see \cite{Combs_Andrews_1998,Jayaram2008} and \cite{Baczynski_Jayaram_2008}). Recently in some considerations connected with these distributivity laws, the following functional equation appeared (see \cite{Baczynski_Jayaram_2009})
f(min(x+y,a))=min(f(x)+f(y),b),
where a,b>0 and f:[0,a]→[0,b] is an unknown function. In this paper we consider in detail a generalized version of this equation, namely the equation
f(m1(x+y))=m2(f(x)+f(y)),
where m1,m2 are functions defined on some intervals of \R satisfying additional assumptions. We analyze the cases when m2 is injective and when m2 is not injective.