Tokenizer, POS Tagger, Lemmatizer, and Parser model based on the PDT-C 1.0 treebank (https://hdl.handle.net/11234/1-3185). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#czech_pdtc1.0_model . To use these models, you need UDPipe version 2.1, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
CERED (Czech Relationship Dataset) is a family of datasets created via distant supervision on Czech Wikipedia and Wikidata. It was created as part of a thesis on Relationship Extraction (2020).
CERED0 is the largest dataset, it lacks negative relation and its relation inventory is huge.
CERED*n* is a subset of CERED*n-1* that satisfies some conditions. The methodology of curating the datasets is detailed in the thesis.
The format of the data is jsonL and the tools used to generate the dataset is python.
The Czech translation of SQuAD 2.0 and SQuAD 1.1 datasets contains automatically translated texts, questions and answers from the training set and the development set of the respective datasets.
The test set is missing, because it is not publicly available.
The data is released under the CC BY-NC-SA 4.0 license.
If you use the dataset, please cite the following paper (the exact format was not available during the submission of the dataset): Kateřina Macková and Straka Milan: Reading Comprehension in Czech via Machine Translation and Cross-lingual Transfer, presented at TSD 2020, Brno, Czech Republic, September 8-11 2020.
English model for NameTag, a named entity recognition tool. The model is trained on CoNLL-2003 training data. Recognizes PER, ORG, LOC and MISC named entities. Achieves F-measure 84.73 on CoNLL-2003 test data.
POS Tagger and Lemmatizer models for EvaLatin2020 data (https://github.com/CIRCSE/LT4HALA). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#evalatin20_models .
To use these models, you need UDPipe version at least 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
The dataset of handwritten Czech text lines, sourced from two chronicles (municipal chronicles 1931-1944, school chronicles 1913-1933).
The dataset comprises 25k lines machine-extracted from scanned pages, and provides manual annotation of text contents for a subset of size 2k.
MorfFlex CZ 2.0 is the Czech morphological dictionary developed originally by Jan Hajič as a spelling checker and lemmatization dictionary. MorfFlex is a flat list of lemma-tag-wordform triples. For each wordform, full inflectional information is coded in a positional tag. Wordforms are organized into entries (paradigm instances or paradigms in short) according to their formal morphological behavior. The paradigm (set of wordforms) is identified by a unique lemma. Apart from traditional morphological categories, the description also contains some semantic, stylistic and derivational information. For more details see a comprehensive specification of the Czech morphological annotation http://ufal.mff.cuni.cz/techrep/tr64.pdf .
NER models for NameTag 2, named entity recognition tool, for English, German, Dutch, Spanish and Czech. Model documentation including performance can be found here: https://ufal.mff.cuni.cz/nametag/2/models . These models are for NameTag 2, named entity recognition tool, which can be found here: https://ufal.mff.cuni.cz/nametag/2 .
NER models for NameTag 2, named entity recognition tool, for English, German, Dutch, Spanish and Czech. Model documentation including performance can be found here: https://ufal.mff.cuni.cz/nametag/2/models . These models are for NameTag 2, named entity recognition tool, which can be found here: https://ufal.mff.cuni.cz/nametag/2 .
Model trained for Czech POS Tagging and Lemmatization using Czech version of BERT model, RobeCzech. Model is trained on data from Prague Dependency Treebank 3.5. Model is a part of Czech NLP with Contextualized Embeddings master thesis and presented a state-of-the-art performance on the date of submission of the work.
Demo jupyter notebook is available on the project GitHub.