Irradiation of etiolated leaves leads to their greening. Although this problem has a long history, the question of whether the intermittent irradiation (IMI) grown plants have fully functional reaction centres as well as the oxygen clock, before exposure to continuous irradiation (CI), had not been resolved. To answer this question, as well as to analyze the development of the two photosystems, the following parallel measurements were made: (1) Emission spectra at 77 K; (2) OJIP chlorophyll (Chl) a fluorescence transient; (3) period 4 oscillation in the flash number dependence of initial fluorescence F0 (at 50 µs) and FJ (at 2 ms); and (4) P700. In the 1-ms-flash (FL) grown pea, that has a different biogenesis of the photosynthetic apparatus, delayed light emission (DLE) and Chl a fluorescence transient were measured in parallel. Quantitative analysis of Chl a fluorescence values provided the following conclusions: (1) IMI, not FL, plants have almost fully developed reaction centres and the oxygen clock. (2) Further greening of IMI plants under CI involves two phases: (a) during 3-4 h of CI, the number of PS2 units and connectivity between them increase, and then (b) light-harvesting antenna increases. (3) In FL, 10 min CI activates fully the oxygen clock. and A. Srivastava, R. J. Strasser, Govindjee.
The effect of water on the primary photosynthetic activity of purple bacterium Rhodospirillum rubrum was studied in Hexadecane-Tween-Spane (HTS)- and phospholipid (PLC)-reverse micelles. Reverse micelles offer the possibility of modulating the amount of water to which enzymes and multienzymatic complexes are exposed. Fast bacteriochlorophyll (BChl) fluorescence induction kinetics and reaction centre absorption changes at 820 nm were used as an assay for the functional transfer of bacterial cells into HTS-reverse micelles and bacterial photosynthetic complexes (BPC) into PLC-reverse micelles. Both the bacterial cells and BPC showed an increase in the rate of primary photosynthetic activity by increasing the concentration of water in the reverse micelles. The bacterial cells could be kept viable for many hours in HTS-reverse micelles in presence of 6% (v/v) water. NMR studies indicated that the photosynthetic activity was affected by the availability of water in reverse micelles. The bacterial cells in HTS or BPC in PLC reverse micelles could be used to further understand the influence of water on the organisation and function of photosynthetic complexes. and A. Srivastava, A. Darszon, R. J. Strasser.