Acrylamide (AA) is one of the most common toxins in foods. Its
effect on bone microstructure has not been investigated. The aim
of our study was to analyze the impact of acute exposure to AA on
femoral bone microstructure in mice. Adult animals were treated
perorally with 2 doses of AA (E1 group, 1 mg/kg b.w.) in a 24-h
period and with 3 doses of AA (E2 group, 1 mg/kg b.w.) in a 48-h
period. Mice exposed to AA had smaller sizes of primary osteon's
vascular canals. Secondary osteons were significantly smaller in
mice from E2 group; however their increased number (from 38 %
to 77 %) was identified in both E1 and E2 groups. In these groups,
a higher number of resorption lacunae (from 100 % to 122 %) was
also found. The values for bone volume, trabecular number were
increased and that for trabecular separation was decreased in mice
administered AA. Significantly higher value of bone surface was
observed in mice from E1 group whereas trabecular thickness was
increased in E2 group. The effect of AA on microstructure of
compact and trabecular bone tissues is different. In our study, one
dose of AA was used and acute effects of AA were investigated.
Therefore, further studies are needed to study mechanisms by
which AA acts on bone.
Taurine, a sulphur - containing amino acid, has been termed
a functional nutrient. Its synthetic form is a common ingredient
in supplements and energy drinks. There is no information
concerning taurine impact on bone microstructure after
prolonged supplemental use. Also, differences in bone
parameters of mice following taurine exposure are unknown. In
this study, a detailed microstructure of compact and trabecular
bone tissues of mice subchronically exposed to taurine was
determined. Animals (n=12) were segregated into three groups:
E1 group – mice received 20 mg/kg b.w. of taurine per day
during 8 weeks; E2 group – mice were fed by taurine at a dose
of 40 mg/kg b.w. for 8 weeks and a control (C) group. Decreased
density of secondary osteons, increased sizes of primary osteon's
vascular canals (P<0.05) were observed in taurine – treated
animals. Cortical bone thickness, trabecular thickness were
decreased (P<0.05) in E1 group, and relative volume of
trabecular bone was lower (P<0.05) in E2 group as compared to
C group. According to our results, prolonged taurine exposure at
the doses used in this study can negatively affect both compact
and trabecular bone tissues microstructure.