In this study Active Learning Method (ALM) as a novel fuzzy modeling approach is compared with optimized Support Vector Machine (SVM) using simple Genetic Algorithm (GA), as a well known datadriven model for long term simulation of daily streamflow in Karoon River. The daily discharge data from 1991 to 1996 and from 1996 to 1999 were utilized for training and testing of the models, respectively. Values of the Nash-Sutcliffe, Bias, R2 , MPAE and PTVE of ALM model with 16 fuzzy rules were 0.81, 5.5 m3 s -1, 0.81, 12.9%, and 1.9%, respectively. Following the same order of parameters, these criteria for optimized SVM model were 0.8, -10.7 m3 s-1, 0.81, 7.3%, and -3.6%, respectively. The results show appropriate and acceptable simulation by ALM and optimized SVM. Optimized SVM is a well-known method for runoff simulation and its capabilities have been demonstrated. Therefore, the similarity between ALM and optimized SVM results imply the ability of ALM for runoff modeling. In addition, ALM training is easier and more straightforward than the training of many other data driven models such as optimized SVM and it is able to identify and rank the effective input variables for the runoff modeling. According to the results of ALM simulation and its abilities and properties, it has merit to be introduced as a new modeling method for the runoff modeling. and Cieľom štúdie bolo porovnať možnosti dlhodobej simulácie denných prietokov v rieke Karoon pomocou novovyvinutej fuzzy metódy aktívneho učenia (Active Learning Method - ALM) a známej metódy vektormi podporených strojov (Support Vector Machine - SVM), optimalizovanej genetickým algoritmom (GA). Na tréning a testovanie modelov boli použité časové rady denných prietokov za obdobie rokov 1991 až 1996 a 1996 až 1999. Hodnoty parametrov Nash-Sutcliffe, Bias, R2 , MPAE a PTVE pre model ALM boli 0,81; 5,5 m3 s-1; 0,81; 12,9% a 1,9%. Parametre v tom istom poradí pre model SVM boli 0,8 -10,7 m3 s-1, 0,81; 7,3%; a -3,6%. Z výsledkov simulácií vyplýva, že aplikáciou metód ALM a SVM možno získať porovnateľné a akceptovateľné výsledky. Podobnosť výsledkov medzi ALM a SVM implikuje vhodnosť novovyvinutej metódy ALM pre simuláciu odtoku. Tréning ALM je ľahší a jednoduchší ako je tréning ďalších dátami riadených modelov podobného typu. Navyše algoritmus ALM je schopný identifikovať a zoradiť efektívne vstupné premenné pre modelovanie odtoku. Na základe dosiahnutých výsledkov možno metódu ALM zaradiť medzi nové, alternatívne metódy modelovania odtoku.
Time of concentration (TC) of surface flow in watersheds depends on the coupled response of hillslopes and stream networks. The important point in this background is to study the effects of the geometry and the shape of complex hillslopes on the time of concentration considering the degree of flow convergence (convergent, parallel or divergent) as well as the profile curvature (concave, straight or convex). In this research, the shape factor of complex hillslopes as introduced by Agnese et al. (2007) is generalized and linked to the TC. A new model for calculating TC of complex hillslopes is presented, which depends on the plan shape, the type and degree of profile curvature, the Manning roughness coefficient, the flow regime, the length, the average slope, and the excess rainfall intensity. The presented model was compared to that proposed by Singh and Agiralioglu (1981a,b) and Agiralioglu (1985). Moreover, the results of laboratory experiments on the travel time of surface flow of complex hillslopes were used to calibrate the model. The results showed that TC for convergent hillslopes is nearly double those of parallel and divergent ones. TC in convex hillslopes was very close to that in straight and concave hillslopes. While the effect of convergence on TC is considerable, the curvature effect confirmed insignificant. Finally, in convergent hillslopes, TC increases with the degree of convergence, but in divergent hillslopes, it decreases as degree of divergence increases.