At present, research activities on the role of orchard systems in sequestering atmospheric CO2 remain scarce. This paper aimed to contribute to assessing the carbon balance of a Mediterranean olive (Olea europea) orchard. The net ecosystem exchange, the ecosystem respiration and the gross primary production were computed for two consecutive years through eddy covariance, and the different biomass accumulation terms were also inferred in the same period through an inventorial method. The net carbon exchange ranged from 13.45 t(C) ha-1 year-1 to 11.60 t(C) ha-1 year-1. Very similar values [12.2 and 11.5 t(C) ha-1 year-1] were found with the direct carbon accumulation inventory. The intensive farming management (irrigation included) and the young age of the plants (12-16 years old), still in an active growing phase, led the olive plantation to be a higher carbon sink with respect to other evergreen orchards reported in the literature., M. Nardino ... [et al.]., and Obsahuje bibliografii
Global warming will likely exacerbate the negative effects of limited water availability in the Mediterranean area. The Italian Aleppo pine (Pinus halepensis Mill.) provenances are distributed along the coasts except Otricoli provenance growing in an unusual location between 300 and 1,000 m a. s. l., in Umbria (central Italy). The aim of the present study was to investigate the photosynthetic response to a 28-day-long drought and to a subsequent reestablishment of water availability in Otricoli and North Euboea (Greece) provenances, representing different locations along a rainfall gradient in the natural range of this species. Six-month-old seedlings were used in this experiment since at this age Aleppo pine plants in Mediterranean climate face their first water stress potentially affecting plant survival. Water potential (ψw), net photosynthesis and stomatal conductance decreased during drought in both provenances and showed minimal values 28 days after beginning the treatment (DAT). Otricoli seedlings adjusted ψw gradually as the stress level increased and 21 DAT showed a lower ψw than North Euboea. In contrast, in North Euboea seedlings ψw that was not affected until 21 DAT rapidly dropped to a minimum of -3.81 MPa 28 DAT. At the onset of the stress the intercellular CO2 concentration (Ci) was reduced, and the "instrinsic" water-use efficiency (WUEi) was enhanced in both provenances, as stomatal conductance decreased more rapidly than photosynthesis. However, 28 DAT, Ci increased and WUEi decreased as stomatal conductance and photosynthesis declined to minimum levels, revealing nonstomatal limitations of photosynthesis. A rapid decrease in PSII maximal photochemical efficiency estimated by chlorophyll (Chl) fluorescence (Fv/Fm) was also observed when the stress became severe. At the final stage of water stress, North Euboea seedlings maintained significantly higher values of Fv/Fm than Otricoli seedlings. Upon rewatering, photosynthesis did not fully recover in Otricoli seedlings (41 DAT), while all other parameters recovered to control levels in both provenances. No drought-induced physiological differences were consistent with the regional climatic features of these two provenances. Our results suggest that phenotypic plasticity in drought response may help Otricoli provenance cope with global warming, but that recurrent drought episode may slow down the primary productivity of this provenance. and M. Michelozzi ... [et al.].