Six populations of Hieracium echioides subsp. echioides var. tauscheri from the Danube Basin between Bratislava and Budapest (locations: Balinka, Čenkov, Devín, Dorog, Győr, Pilis) were analysed using allozyme and karyological analysis. Five allozyme systems (EST, LAP, 6PGDH, PGM, and SKDH) were used to analyse the genetic structure of the examined populations. Analyses revealed low genetic variation both within- and among populations. Four multilocus allozyme phenotypes were detected; three populations (Čenkov, Devín and Győr) possessed phenotype I exclusively, while phenotype II was found only in the Balinka and Dorog populations. Two different phenotypes were found in the population of Pilis (phenotypes III and IV). However, due to the complex banding patterns generated for EST, allelic interpretationwas not possible, and the Balinka and Dorog populations appeared to possess different phenotypes. All populations proved to be tetraploid (2n = 36) and agamospermous. The geographic distribution pattern of the analysed populations (one allozyme phenotype at several isolated localities) may reflect a more common occurrence of the taxon in the past. Landscape changes, caused by changes in human management of the country, may have resulted in a loss of suitable localities, mainly open sandy habitats. These changes may have caused the reduction and fragmentation of H. *tauscheri habitat.
Evidence from isozyme electrophoresis confirmed previous hypothesis on the occurrence of interspecific hybridization between Potamogeton natans L. and P. lucens L. formulated on the basis of morphology and stem anatomy. Isozyme phenotypes of the morphologically intermediate plants were compared with those obtained from the putative parents growing in the same locality. P. natans and P. lucens differed consistently in at least 12 loci and possessed different alleles at 7 loci. The hybrid had no unique alleles and exhibited an additive “hybrid” isozyme pattern for all 7 loci that could be reliably analysed and where the parents displayed different enzyme patterns. Both true parental genotypes were detected among samples of plants of P. lucens and P. natans from the same locality. The hybrid plants represent a recent F1 hybrid generation resulting from a single hybridization event. Consistent differences in enzyme activity between submerged and floating leaves of P. natans and P. ×fluitans were observed in all interpretable enzyme systems.
Haploid parthenogenesis in facultatively apomictic Pilosella generated polyhaploid progeny (with half the maternal chromosome set) both in natural populations and garden experiments. Production of polyhaploids varied considerably among different species, hybridogenous species and hybrids. In the field (14 localities), the highest frequency of polyhaploids exceeded 80% of the total seed progeny produced by some recent hybrids. A similar diversity in the production of polyhaploids was also recorded in garden experiments. A two-step process by which new genotypes of both P. aurantiaca (tetraploid) and P. rubra (hexaploid) were formed under garden conditions during a polyploid–polyhaploid–polyploid cycle is described. In the first step, the maternal plants generated dihaploid and trihaploid F1 progeny, respectively. Although a substantive part of this polyhaploid progeny was either non-viable or sterile, the apomictic polyhaploids occasionally doubled their genome. Consequently, the F2 progeny resulting from the second step had a double ploidy level, identical to that of the original maternal parent. The complete process was autonomous, without contribution of pollen from parent genotype. This cycle necessarily implicates increasing homozygosity in F2 progeny compared to the original maternal polyploid plant. The probabilities of particular steps of this process occurring in Pilosella and the variation in polyhaploids are estimated and described, and the ability of polyhaploid plants to survive under field conditions discussed. Probability of the complete cycle (haploid parthenogenesis followed by doubling of the genome), which occurred under garden conditions in P. rubra, is estimated to be in the order of hundredths of percent. Despite this low probability, it can result in the production of new homozygous genotypes in populations of apomicts, especially in those occurring in disturbed habitats with little competition.
The present paper summarizes the results of research of Hieracium subgen. Pilosella done by using different methods. The apomictic complex of Hieracium subgen. Pilosella found in the Krkonoše Mts, consists of the following basic species: H. lactucella (2x, sexual), H. onegense (2x, sexual), H. pilosella (4x, sexual), H. caespitosum (4x, apomictic) and H. aurantiacum (4x and 5x, apomictic). These species are considered to be the parents of a further set of mostly apomictic hybridogenous types. The ploidy level, breeding system, isozyme phenotypes, chloroplast haplotypes and geographic distribution of this whole complex was analysed. The different hybridogenous types have different frequencies in the field and differ in the frequency of isozyme phenotypes (a conservative estimate of the number of genotypes). Most have uniform chloroplast haplotypes, but some haplotypes could have originated from reciprocal crosses. The comparison of chloroplast haplotypes suggests that apomictic species were not only pollen donors, but also contributed seed and gave rise to several hybridogenous types, illustrating the importance of the residual sexuality of apomicts in this group. H. pilosella is a central species in this group and is connected with other parental species, H. floribundum, H. lactucella and H. aurantiacum by a set of hybridogenous species that have a similar genetic structure. Some of the distinct hybridogenous types within the complex are of multiple origin. In contrast, crosses between the same parental types may generate diverse progenies, which can often be classified as distinct taxa. All taxa recorded in the past are surveyed and discussed with respect to present knowledge. We suggest that the taxonomy and origin of particular entities of this and other such complexes is best resolved using information from morphological, genetical, cytological and ecological studies.