Adsorption of phenol and aniline onto original and with quaternary ammonium salts (QASs)-modified montmorillonite was described by sorption isotherms of type III and II, respectively. For the montmorillonite (MMT) modification - hydrophobisation, cetyltrimethyl- ammonium (CTMA) and tetramethylammonium (TMA ) cations were used. In comparison with phenol, aniline was adsorbed largely on original MMT but less on modified one. XRD pa tterns indicated that both aromatic compounds were intercalated in the MMT interlayer be ing perpendicularly oriented to silicate sheets. Alkyl chains of CTMA and TMA probably act as organic "pillars" stabilising the MMT tabular structure against exfoliation due to the intercalation with phenol and aniline of high concentrations., Hana Kostelníková, Petr Praus and Martina Turicová., and Obsahuje bibliografické odkazy
Hg(II) ions dissolved in aqueous solutions were adsorbed by montmorillonite (MMT). The Hg(II) ion-exchange was strongly limited by the competition with H+ ions: the maximal amounts of adsorbed Hg(II) and H+ ions were 0.21 mmol g-1 and 1.10 mmol g-1, respectively. MMTs saturated with Hg(II) (Hg-MMTs) were examined by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermal analysis. Hg(II) ions, such as Hg2+ and [Hg(OH)+], along with H+ ones were mostly adsorbed on permanent sites (75 % of cation exchange capacity (CEC)) and also on pH dependent surface sites (25 % of CEC). While heating, Hg-MMTs was loosing their mass up to 700 °C as a result of the MMT dehydration and dehydroxylation accompanied by release of adsorbed Hg(II)., Petr Praus, Marcela Motáková and Michal Ritz., and Obsahuje bibliografii