Raloxifen is a selective estrogen receptor modulator which prevents bone loss in ovariectomized female mice in a fashion similar to estrogens. Since testosterone-deficient male mice also lose bone mass, we were interested in testing the effects of raloxifen on bones in intact and castrated male mice. Bone density was significantly reduced in castrated animals (1.36±0.04 g/ml) as compared to intact animals (1.42±0.03 g/ml) (p<0.01). When castrated mice with extraordinarily low concentrations of testosterone and with reduced weight of seminal vesicles were treated with raloxifen, the changes in bone density and bone minerals resulting from castration (1.36±0.04 g/ml) were entirely prevented (1.40±0.01 g/ml). Cortical bone was lost in orchidectomized mice, and this decrease in cortical thickness of the femur was prevented by raloxifen administration. Raloxifen in a dose used in humans for treatment of osteoporosis decreased the weight of seminal vesicles, an organ which is highly sensitive to the androgenic effect, decreased the concentration of testosterone (12.5±2.8 μmol/l) (p<0.01) but not to the same level as in the case of castrated animals (0.6±0.3 μmol/l), and did not have any effect on bone density or mineral content in intact mice. The results of the present study may thus be interpreted as supporting the hypothesis that raloxifen is an effective agent against the deleterious effects of castration-induced osteopenia in male mice and also support the hypothesis that estrogens may have physiological skeletal effects in male mice., P. D. Broulík, K. Broulíková., and Obsahuje bibliografii a bibliografické odkazy
The pathophysiological processes underlying the development of diabetic osteopenia has not hitherto been elucidated. Induction of streptozotocin diabetes leads in our experiments to decrease of bone density, ash, mineral content and to thinner cortical width compared to control male rats. In order to investigate the pathogenetic role of bone resorption by osteoclasts in streptozotocin-induced diabetes, we determined the circulating levels of tartrate-resistant acid phosphatase (TRAP), a biochemical marker for bone resorption. Plasma TRAP values in diabetic rats did not differ from their corresponding controls. Streptozotocin diabetes by itself did not have any effect on the weight of seminal vesicles which are highly testosterone-dependent. Low doses of nitric oxide cause bone resorption, but higher doses of NO inhibit bone resorbing activity. We examined the effect of L-NAME (inhibitor of nitric oxide production) after six weeks of administration to diabetic rats. There was no further significant loss of bone mineral density, ash and mineral content or tibia weight in diabetic rats treated with L-NAME. L-NAME itself did not decrease bone metabolism. In our study no evidence of an increased bone resorption was found. Our results have indicated that a predominance of bone resorption over bone formation is not involved in the pathogenesis of diabetes-associated osteopenia. Inhibition of NO neither increased osteoclastic activity (TRAP) nor induced osteopenia in L-NAME-treated rats. This suggests a possibility that NO is not involved in the pathogenesis of diabetic osteopenia., P. D. Broulík, M. Haluzík, J. Škrha., and Obsahuje bibliografii