Large debris transported by flood affects scour features at bridge piers and increases the risks of structural failure. Geometric characteristics of the debris and the relative position of the pier with respect to the river bank are important parameters for the scour process. The interaction between the water flow and debris accumulation increases the shear stress, turbulence and consequently enhances the scour depth at the pier. This paper aims at analyzing such effects on scour evolution at bridge piers. To this end, two series of tests were carried out under clear water condition with different debris geometries and percentage blockage ratios. Experimental evidences showed that the pier position only influences scour evolution and equilibrium morphology for low water depths. Conversely, its effect becomes negligible for scour at bridge piers with debris accumulation and higher water depths. Useful practical relationships have been derived, with satisfactory prediction capability of the scour evolution for all the tested configurations.
A large-scale piano key weir laboratory study was conducted to investigate the evolution of the scour process occurring in the downstream basin for two non-cohesive granular bed materials, including the analysis of scour-hole geometry and patterns at equilibrium. It was observed that hydraulic conditions, particularly tailwater level, significantly affect the scour mechanisms and equilibrium morphology, eventually resulting in scour depths that exceeded the weir height. Unprecedented insights on the scour dynamics are also provided, along with tools to estimate the time evolution and maximum scour depth, its location in the streamwise direction, and the maximum scour length.