There are many strategies to control leishmaniasis, but majority of them are inadequate. Killed Leishmania vaccine (KLV) has been applied for its immunogenicity in human and mouse model. Bacillus Calmette-Guerin (BCG) as adjuvant is an immunemodulator inducing humoral and cellular immune responses during zoonotic cutaneous leishmaniasis (ZCL). Both KLV and BCG have been applied for their immune responses in hosts for controlling leishmaniasis. In this study, KLV and BCG were applied to inhibit replication and visceralization of Leishmania major in BALB/c mice. Mice were injected with KLV and BCG, followed by infection with promastigotes of L. major. Six weeks after infection, a small nodule appeared, which was followed by development of a large lesion and visceralization. Effects of KLV and BCG, physiopathological changes, lesion size, delay of lesion formation, proliferation of amastigotes inside macrophages and detection of amastigotes in target organs were studied. Results showed that the KLV had anti-leishmanial activity by reducing lesion size on late infection. In KLV and BCG group, the average number of amastigotes in macrophages was lower than in other groups. Significant reductions in number of amastigotes in both spleen and lymph node were observed, indicating lower visceralization of Leishmania parasites in these target organs. No significant changes were presented in body weights, survival rates and degrees of splenomegaly in test group. It can be concluded that application of KLV and BCG had acceptable efficacy in reduction of skin lesions size and proliferation of parasites, even though a few side-effects were observed. It is indicated that KLV/BSG may have ability to modulate host immune responses against Leishmania parasites and to reduce pathophysiology of the disease during infection.
Apoptosis plays crucial role in the pathogenesis of toxoplasmosis, as it limits further development of the disease. The current study aimed to investigate the effects of different concentrations of soluble total antigen (STAg) of Toxoplasma gondii (Nicolle et Manceaux, 1908) on the apoptotic and anti-apoptotic pathways. PMA-activated THP-1 cell line was sensed by T. gondii STAg and the expression patterns of caspase-3, -7, -8, -9, Bax, Bcl-2, and Mcl-1 genes were evaluated. The results showed statistically significant concentration-dependent overexpression of both Bcl-2 (P-value < 0.0001) and Mcl-1 (P-value = 0.0147). The cas-7 showed overexpression in all concentrations (P-value < 0.0001). The cas-3 was suppressed in concentrations 100, 80, and 40 µg, but statistically significant downregulated in concentrations 10 and 20 µg. The Bax was suppressed in concentrations 100 to 20 µg, while it slightly downregulated 1.42 fold (P-value = 0.0029) in concentration 10 µg. The expression of cas-8 and -9 was suppressed in all concentrations. Our results indicated that T. gondii STAg downregulated and suppressed apoptotic and upregulated anti-apoptotic pathways. The upregulation of cas-7 in this study may indicate the role of T. gondii STAg in activation of inflammatory responses.