Two mechanisms contribute in the development of pulmonary hypertension in pulmonary embolism (PE) - obstruction of pulmonary blood vessels and vasoconstriction. We hypothesize that hypoxia, increased shear stress and/or activation of gathered leukocytes in the PE may cause a release of reactive oxygen species (ROS). Therefore our aim was to determine the influence of the ROS scavenger Tempol on pulmonary hypertension and to d escribe NO synthase activity and production of NO oxidative products (NOx) after PE. In general anesthesia sephadex microspheres suspended in PSS were applied in right jugular vein as the pulmonary microembolism. Than we measured in isolated salt solution -perfused lungs the changes in perfusion pressure, activity of NO synthase and NOx plasma concentration in 7 groups of rats: C: control group (n=5), CN: C + sodium nitroprusside (SN) (n=5), EN: PE + SN (n=5), ETN: Tempol + PE + SN (n=5), CL : C + L -NAME (n=5 ), EL: PE + L-NAME (n=5), ETL: Tempol + PE + L -NAME (n=5). Tempol was applied intraperitoneally before PE. Animals that received Tempol (groups TN, TL) had significantly lower basal perfusion pressure than those which did not rec eive Tempol (EN, EL). Overa ll we measured a higher decrease of perfusion pressure than in the control group (C) after applica tion of SN. Administration of L-NAME after PE (EL) increased the pressure more than in the control group (NL). NOx concentration was higher after PE. We found that preventive administration of Tempol decreases the increase in perfusion pressure after PE. PE increased NO release and concentration of NOx., R. Mizera, D. Hodyc, J. Herget., and Obsahuje bibliografii