At present, there are insufficient information about baroreflex sensitivity (BRS) and factors that determine BRS in premature newborns. The objective of this study was to determine the relationship between BRS and the characteristics that reflecting the intrauterine development (gestational age and birth weight), as well as postnatal development (postconception age and the actual weight of the child at the time of measurement). We examined 57 premature infants, who were divided into groups according to gestational age and postconception age as well as birth weight, and weight at the time of measurement. Continuous and noninvasive registration of peripheral blood pressure (BP) was perf ormed in every child within 2-5 m in under standard conditions using a Portapres (FMS) device. The results showed a close correlation of baroreflex sensitivity, heart rate and respiratory rate with gestational age, postconception age, birth weight and actual weight at the time of measureme nt premature newborns. An increase in the characteristics (ages and weights) resulted in increased BRS and diastolic arterial pressure (DAP), and in decreased heart and respiratory rates. Baroreflex sensitivity in the first week was in the group of very premature newborns the lowest (4.11 ms/mmHg) and in the light premature newborns was almost double (8.12 ms/mmHg). BRS increases gradually in relation to postnatal (chronological) and to postconception age as well as to birth and actual weight. The multifact or analysis of BRS identified birth weight and postconception age as the best BRS predictors. The two independent variables together explained 40 % of interindividual BRS variability., K. Haskova, M. Javorka, B. Czippelova, M. Zibolen, K. Javorka., and Obsahuje bibliografii
Heart rate (HR) and heart rate variability (HRV) in newborns is influenced by genetic determinants, gestational and postnatal age, and other variables. Premature infants have a reduced HRV. In neonatal HRV evaluated by spectral analysis, a dominant activity can be found in low frequency (LF) band (combined parasympathetic and sympathetic component). During the first postnatal days the activity in the high frequency (HF) band (parasympat hetic component) rises, together with an increase in LF band and total HRV. Hypotrophy in newborn can cause less mature autonomic cardiac control with a higher contribution of sympathetic activity to HRV as demonstrated by sequence plot analysis. During quiet sleep (QS) in newborns HF oscillations increase - a phenomenon less expressed or missing in premature infants. In active sleep (AS), HRV is enhanced in contrast to reduced activity in HF band due to the rise of spectral activity in LF band. Comparison of the HR and HRV in newborns born by physiological vaginal delivery, without (VD) and with epidural anesthesia (EDA) and via sectio cesarea (SC) showed no significant differences in HR and in HRV time domain parameters. Analysis in the frequency domain re vealed, that the lowest sympathetic activity in chronotropic cardiac chronotropic regulation is in the VD group. Different neonatal pathological states can be associated with a reduction of HRV and an improvement in the health conditions is followed by ch anges in HRV what can be use as a possible prognostic marker. Examination of heart rate variability in neonatology can provide information on the maturity of the cardiac chronotropic regulation in early postnatal life, on postnatal adaptation and in pathological conditions about the potential dysregulation of cardiac function in newborns, especially in preterm infants., K. Javorka, Z. Lehotska, M. Kozar, Z. Uhrikova, B. Kolarovszki, M. Javorka, M. Zibolen., and Obsahuje bibliografii