In this paper, we introduce a set of methods for processing and analyzing long time series of 3D images representing embryo evolution. The images are obtained by in vivo scanning using a confocal microscope where one of the channels represents the cell nuclei and the other one the cell membranes. Our image processing chain consists of three steps: image filtering, object counting (center detection) and segmentation. The corresponding methods are based on numerical solution of nonlinear PDEs, namely the geodesic mean curvature flow model, flux-based level set center detection and generalized subjective surface equation. All three models have a similar character and therefore can be solved using a common approach. We explain in details our semi-implicit time discretization and finite volume space discretization. This part is concluded by a short description of parallelization of the algorithms. In the part devoted to experiments, we provide the experimental order of convergence of the numerical scheme, the validation of the methods and numerous experiments with the data representing an early developmental stage of a zebrafish embryo.
We develop a method for counting number of cells and extraction of approximate cell centers in 2D and 3D images of early stages of the zebra-fish embryogenesis. The approximate cell centers give us the starting points for the subjective surface based cell segmentation. We move in the inner normal direction all level sets of nuclei and membranes images by a constant speed with slight regularization of this flow by the (mean) curvature. Such multi-scale evolutionary process is represented by a geometrical advection-diffusion equation which gives us at a certain scale the desired information on the number of cells. For solving the problems computationally we use flux-based finite volume level set method developed by Frolkovič and Mikula in \cite{FM1} and semi-implicit co-volume subjective surface method given in \cite{CMSSg, MSSg_CVS, MSSg_chapter}. Computational experiments on testing and real 2D and 3D embryogenesis images are presented and the results are discussed.
In this paper, we describe an efficient method for 3D image segmentation. The method uses a PDE model - the so called generalized subjective surface equation which is an equation of advection-diffusion type. The main goal is to develop an efficient and stable numerical method for solving this problem. The numerical solution is based on semi-implicit time discretization and flux-based level set finite volume space discretization. The space discretization is discussed in details and we introduce three possible alternatives of the so called diamond cell finite volume scheme for this type of 3D nonlinear diffusion equation. We test the performance of the method and all its variants introduced in the paper by determining the experimental order of convergence. Finally we show a couple of practical applications of the method.
The paper presents the solution to the geodetic boundary value problem by the finite element method in area of Slovak Republic. Generally, we have made two numerical experiments. In the first one, Neumann BC in the form of gravity disturbances generated from EGM-96 is used and the solution is verified by the quasigeoidal heights generated directly from EGM-96. In the second one, Neumann BC is computed from gravity measurements and the solution is compared to the quasigeoidal heights obtained by GPS/leveling method.