Nickel is a ubiquitous environmental pollutant, which has various effects on reproductive endocrinology. In this study, human adrenocortical carcinoma (NCI-H295R) cell line was used as an in vitro biological model to study the effect of nickel chloride (NiCl2) on the viability and steroidogenesis. The cells were exposed to different concentrations (3.90; 7.80; 15.60; 31.20; 62.50; 125; 250 and 500 μM) of NiCl2 and compared with control group (culture medium without NiCl2). The cell viability was measured by the metabolic activity assay. Production of sexual steroid hormones was quantified by enzyme linked immunosorbent assay. Following 48 h culture of the cells in the presence of NiCl2 a dose-dependent depletion of progesterone release was observed even at the lower concentrations. In fact, lower levels of progesterone were detected in groups with higher doses (≥125 μM) of NiCl2 (P<0.01), which also elicited cytotoxic action. A more prominent decrease in testosterone production (P<0.01) was also noted in comparison to that of progesterone. On the other hand, the release of 17β-estradiol was substantially increased at low concentrations (3.90 to 62.50 μM) of NiCl2. The cell viability remained relatively unaltered up to 125 μM (P>0.05) and slightly decreased from 250 μM of NiCl2 (P<0.05). Our results indicate endocrine disruptive effect of NiCl2 on the release of progesterone and testosterone in the NCI-H295R cell line. Although no detrimental effect of NiCl2 (≤62.50 μM) could be found on 17β-estradiol production, its toxicity may reflect at other points of the steroidogenic pathway., Norbert Lukac, Zsolt Forgacs, Hana Duranova, Tomas Jambor, Jirina Zemanova, Peter Massanyi, Barbara Tombarkiewicz, Shubhadeep Roychoudhury, Zuzana Knazicka., and Obsahuje bibliografii
In December of 2019, several cases of unknown atypical respiratory diseases emerged in Wuhan, Hubei Province in China. After preliminary research, it was stated that the disease is transmittable between humans and was named COVID-19. Over the course of next months, it spread all over the world by air and sea transport and caused a global pandemic which affects life of everyone now-a-days. A large number of countries, have since been forced to take precautions such as curfews, lockdowns, wearing facemasks etc. Even with vaccines being produced in mass numbers, lack of targeted therapy continues to be a major problem. According to studies so far it seems that elderly people are more vulnerable to severe symptoms while children tend to by asymptomatic or have milder form the disease. In our review, we focused on gathering data about the virus itself, its characteristics, paths of transmission, and its effect on hormone production and secretion. In such, there is insufficient information in the literature worldwide, especially the ones that focus on the effect of COVID-19 on individual organs systems within the human body. Hence, the present evidence-based study focused on the possible effects of COVID-19 on adrenal gland and gonads i.e. on the process of steroidogenesis and fertility.