Pulmonary hypertension resulting from chronic hypoxia is at least partly caused by the increased production of reactive oxygen species (ROS). The goal of the presented study was to investigate the dynamics and the site of production of ROS during chronic hypoxia. In our study Wistar rats were kept for 1, 4 and 21 days in an isobaric hypoxic chamber (FiO2=0.1), while controls stayed in normoxia. We compared NO production in expired air, plasma and perfusate drained from isolated rat lungs and measured superoxide concentration in the perfusate. We also detected the presence of superoxide products (hydrogen peroxide and peroxynitrite) and the level of ROS-induced damage expressed as the concentration of lipid peroxydation end products. We found that the production and release of ROS and NO during early phase of chronic hypoxia has specific timing and differs in various compartments, suggesting the crucial role of ROS interaction for development of hypoxic pulmonary hypertension., D. Hodyc ... [et al.]., and Obsahuje seznam literatury
To test whether macrophages can play any role in hypoxic pulmonary vasoconstriction, we tested the in vitro response of rings from small pulmonary arteries to the activation of macrophages by FMLP, a substance stimulating predominantly membrane-bound NADPH oxidase. A small vessel myograph was used to measure the responses of rings from small pulmonary arteries (300-400 μ m) isolated from rat lungs. Rings from 5 rats were placed into both chambers of the myograph. The vessels were stabilized for 40 min and then normalized by automatic stretching to a wall tension equivalent to the intravascular pressure 30 mm Hg. At the start of each experiment, vessels were exposed to 80 mM K + to obtain maximal contractile response, which was used to normalize subsequent contractile responses. 2x10 6 viable macrophages, obtained by peritoneal lavage, were added into one chamber, then 5 μ M FMLP was administrated to both chambers and the tension measurement was started. The hydrogen peroxide concentration produced by stimulated macrophages was measured luminometrically. The concentrations of H 2 O 2 in specimens from chambers containing activated macrophages rose from 3.5±1.5 nM to 110±28 nM within 25 min of stimulation, while FMLP itself didn’t increase the H 2 O 2 concentration from the baseline value (4.5±3 nM) in samples from control chambers. After FMLP administration, the tension of the vessel rings in the presence of macrophages reached 0.23±0.07 of maximal contractile response, it did not change in controls. The additi on of ROS scavenger 4-hydroxy- TEMPO blocked the contractile response to the activation of macrophages. We conclude that the activation of macrophages stimulates the contraction of small pulmonary arteries and that this contraction is probably mediated by reactive oxygen species., M. Žaloudíková, J. Herget, M. Vízek., and Obsahuje bibliografii a bibliografické odkazy
Hypoxia stimulates ventilation, but when it is sustained, a decline in the ventilatory response is seen. The mechanism responsible for this decline lies within the CNS, but still remains unknown. In this study, we attempted to elucidate the possible role of hypoxia-induced depression of respiratory neurons by comparing the ventilatory response to hypoxia in intact rats and those with denervated carotid bodies. A whole-body plethysmograph was used to measure tidal volume, frequency of breathing and minute ventilation (VE) in awake and anesthetized intact rats and rats after carotid body denervation during exposure to hypoxia (FIO2 0.1). Fifteen-minute hypoxia induced an initial increase of VE in intact rats (to 248 % of control ventilation in awake and to 227 % in anesthetized rats) followed by a consistent decline (to 207 % and 196 % of control VE, respectively). Rats with denervated carotid bodies responded with a smaller increase in VE (to 134 % in awake and 114 % in anesthetized animals), but without a secondary decline (145 % and 129 % of control VE in the 15th min of hypoxia). These results suggest that afferentation from the carotid bodies and/or the substantial increase in ventilation are crucial for the biphasicity of the ventilatory response to sustained hypoxia and that a central hypoxic depression cannot fully explain the secondary decline in VE., H. Maxová, M. Vízek., and Obsahuje bibliografii