We defined 58 dramatic situations and annotated them in 19 play scripts. Then we selected only 5 well-recognized dramatic situations and annotated further 33 play scripts. In this version of the data, we release only play scripts that can be freely distributed, which is 9 play scripts. One play is annotated independently by three annotators.
We defined 58 dramatic situations and annotated them in 19 play scripts. Then we selected only 5 well-recognized dramatic situations and annotated further 33 play scripts. In the previous (first) version, we released 9 play scripts that could be freely distributed. In this (second) version of the data, we are adding another 10 plays for which we have obtained licenses from authors. In total, there are 19 play scripts available, and one of them is annotated three times - independently by three annotators.
CzEng 1.0 is the fourth release of a sentence-parallel Czech-English corpus compiled at the Institute of Formal and Applied Linguistics (ÚFAL) freely available for non-commercial research purposes.
CzEng 1.0 contains 15 million parallel sentences (233 million English and 206 million Czech tokens) from seven different types of sources automatically annotated at surface and deep (a- and t-) layers of syntactic representation. and EuroMatrix Plus (FP7-ICT-2007-3-231720 of the EU and 7E09003+7E11051 of the Ministry of Education, Youth and Sports of the Czech Republic),
Faust (FP7-ICT-2009-4-247762 of the EU and 7E11041 of the Ministry of Education, Youth and Sports of the Czech Republic),
GAČR P406/10/P259,
GAUK 116310,
GAUK 4226/2011
Texts in 107 languages from the W2C corpus (http://hdl.handle.net/11858/00-097C-0000-0022-6133-9), first 1,000,000 tokens per language, tagged by the delexicalized tagger described in Yu et al. (2016, LREC, Portorož, Slovenia).
Texts in 107 languages from the W2C corpus (http://hdl.handle.net/11858/00-097C-0000-0022-6133-9), first 1,000,000 tokens per language, tagged by the delexicalized tagger described in Yu et al. (2016, LREC, Portorož, Slovenia).
Changes in version 1.1:
1. Universal Dependencies tagset instead of the older and smaller Google Universal POS tagset.
2. SVM classifier trained on Universal Dependencies 1.2 instead of HamleDT 2.0.
3. Balto-Slavic languages, Germanic languages and Romance languages were tagged by classifier trained only on the respective group of languages. Other languages were tagged by a classifier trained on all available languages. The "c7" combination from version 1.0 is no longer used.
Syntactic (including deep-syntactic - tectogrammatical) annotation of user-generated noisy sentences. The annotation was made on Czech-English and English-Czech Faust Dev/Test sets.
The English data includes manual annotations of English reference translations of Czech source texts. This texts were translated independently by two translators. After some necessary cleanings, 1000 segments were randomly selected for manual annotation. Both the reference translations were annotated, which means 2000 annotated segments in total.
The Czech data includes manual annotations of Czech reference translations of English source texts. This texts were translated independently by three translators. After some necessary cleanings, 1000 segments were randomly selected for manual annotation. All three reference translations were annotated, which means 3000 annotated segments in total.
Faust is part of PDT-C 1.0 (http://hdl.handle.net/11234/1-3185).
This machine translation test set contains 2223 Czech sentences collected within the FAUST project (https://ufal.mff.cuni.cz/grants/faust, http://hdl.handle.net/11234/1-3308).
Each original (noisy) sentence was normalized (clean1 and clean2) and translated to English independently by two translators.
HamleDT 2.0 is a collection of 30 existing treebanks harmonized into a common annotation style, the Prague Dependencies, and further transformed into Stanford Dependencies, a treebank annotation style that became popular recently. We use the newest basic Universal Stanford Dependencies, without added language-specific subtypes.