The abundance and microhabitat use of rodents were investigated in four different habitats: two rain-fed crop fields with differing stone bund density, an irrigated field and bushland. A total of 444 individual small mammals belonging to six rodent and one shrew species were recorded in trapping grids and line transects. Of these, 230 individuals (52%) belonged to three pest rodent species of crop fields in northern Ethiopia: Stenocephalemys albipes (65%), Mastomys awashensis (25%) and Arvicanthis niloticus (10%). Population abundance of the three species was higher in the early dry season compared to the rainy season. While the bushland was significantly (p < 0.05) favoured by S. albipes and M. awashensis in both seasons, the irrigated field was preferred by Arvicanthis niloticus in the early dry season. In the early dry season, the microhabitat use of A. niloticus was strongly associated with the type of ground cover (herb) (R2adj = 0.152, P < 0.01). While M. awashensis was associated with vegetation density (R2adj = 0.13, P < 0.01), S. albipes was associated with vegetation cover (R2adj = 0.102, P < 0.001). The findings indicate that co-occurring pest rodent species prefer different microhabitats. Understanding their co-occurrence particularly in crop fields is vital for crop protection as they are known serious agricultural pests in northern Ethiopia.
A study was conducted in Mabira Central Forest Reserve in Uganda to determine rodent species composition, relative abundance, and habitat association. A total of 1,030 rodents belonging to 14 species were captured on 10,584 trap nights. Rodent species recorded include: Lophuromys stanleyi, Hylomyscus stella, Praomys jacksoni, Mastomys natalensis, Lophuromys ansorgei, Lemniscomys striatus, Aethomys hindei, Mus triton, Mus minutoides, Deomys ferrugineus, Gerbilliscus kempi, Rattus rattus, Grammomys kuru, and Hybomys univittatus. Overall, L. stanleyi (23.7%) was the most dominant species followed by H. stella, P. jacksoni, and M. natalensis. Species richness and evenness was highest in the regenerating forest habitat and least in the intact forest habitat. Rodent abundance was significantly affected by habitat type. The regenerating forest habitat had the highest number of animals, while the lowest numbers were observed in the depleted forest habitat. Species diversity was higher in regenerating forest habitat and lowest in the intact forest. The three habitats appeared distinct in terms of rodent species composition and there was a strong association between the two trapping grids in the same habitat type. All ordination plots showed that different rodent species consistently associated with distinct habitats. Habitat type and seasonal changes influenced rodent composition, relative abundance and habitat association. Composition of rodent community reflected the level of habitat degradation and can be used as a proxy for evaluating the biodiversity of lowland tropical forests.