The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel contains 12 transmembrane (TM) regions that are presumed to form the channel pore. However, t here is no direct evidence clearly illustrating the involvement of these transmembr ane regions in the actual CFTR pore structure. To obtain insight into the architecture of the CFTR channel pore, we used patch clamp recording techniques and a strategy of comutagenesis of two potential pore-forming transmembrane regions (TM1 and TM6) to investigate the collaboration of these two TM regions. We performed a range of specific functional assays comparing the single channel conductance, anion binding, and anion selectivity properties of the co -mutated CFTR variants, and the results indicated that TM1 and TM6 play vital roles in forming the channel pore and, thus, determine the functional properties of the channel. Furthermore, we provide d functional evidence that the amino acid threonine (T338) in TM6 has synergic effects with lysine (K95) in TM1. Therefore, we propose that these two residues have functional collaboration in the CFTR channel pore and may collectively form a selective filter ., F. Qian, L. Liu, Z. Liu, C. Lu., and Obsahuje bibliografii