Uninorms, as binary operations on the unit interval, have been widely applied in information aggregation. The class of almost equitable uninorms appears when the contradictory information is aggregated. It is proved that among various uninorms of which either underlying t-norm or t-conorm is continuous, only the representable uninorms belong to the class of almost equitable uninorms. As a byproduct, a characterization for the class of representable uninorms is obtained.
Recently, Drygaś generalized nullnorms and t-operators and introduced semi-t-operators by eliminating commutativity from the axiom of t-operators. This paper is devoted to the study of the discrete counterpart of semi-t-operators on a finite totally ordered set. A characterization of semi-t-operators on a finite totally ordered set is given. Moreover, The relations among nullnorms, t-operators, semi-t-operators and pseudo-t-operators (i. e., commutative semi-t-operators) on a finite totally ordered set are shown.