Epigenetická regulace aktivity genů může významnou měrou ovlivňovat fenotypovou variabilitu organismů. Vzhledem k tomu, že některá indukovaná epigenetická variabilita může být děděna po mnoho generací, je možné, že epigenetická variabilita ovlivňuje jak ekologii, tak i evoluční trajektorie organismů. V článku popisuji některé poslední poznatky úlohy epigenetické variability v ekologii a evoluci rostlin., Phenotypic variation can be driven by epigenetic regulation of genes' activity. It is possible that induced epigenetic variation can alter the ecology and evolutionary trajectories of organisms because some induced epigenetic variation can be faithfully heritable among several generations. In the article, I discuss some recent information about the role of epigenetic variation in the ecology and evolution of plants., and Vít Latzel.
Something good comes out from all bad. The phenotype of all living organisms is conditioned by their genetic information and its interaction with environment. Nonetheless, during the past three decades it has been repeatedly shown that the phenotype expressed by an individual can also be affected by the parental environment, which is called parental effects. In the text I introduce the mechanisms of parental efffects. I also summarize our research on plants, which revealed that mothers are able to affect photosynthesis of their progeny. Morover, mothers can also "prepare" their progeny on disturbance event if they also experienced disturbance. I also discuss the possible role of parental effects in evolution of populations. At last I notice that stress experienced by parents or grandparents both in plants and animals may result in better performance of progeny contributing thus finally in enhanced fitness of starving (grand)parents.
Plants’ abilities to function are difficult to evaluate directly in the field. Therefore, a number of attempts have been made to determine easily measurable surrogates – plant functional traits (PFTs). In particular, the value of PFTs as tools for predicting vegetation responses to management (i.e., grazing and mowing) is the focus of a large number of studies. However, recent studies using PFTs to predict the effect of pasture management in different regions did not give consistent predictions for the same set of PFTs. This lead to the suggestion that more specific traits better suited for a specific region be used in the future. We consider the identification of the most adaptative traits for surviving grazing and mowing in different biomes an important goal. Using temperate grasslands in Europe as an example, we show that (i) plant height, often considered as the best predictor of species response to grassland management, is coupled with other more relevant functional traits, and that (ii) clonal traits have important, often neglected functions in the response of species to grassland management. We conclude that single traits cannot be the only basis for predicting vegetation changes under pasture management and, therefore, a functional analysis of the trade-off between key traits is needed.