Pigments absorbing 350-1,050 nm radiation have had an important role on the Earth for at least 3.5 billion years. The ion pumping rhodopsins absorb blue and green photons using retinal and pump ions across cell membranes. Bacteriochlorophylls (BChl), absorbing in the violet/blue and near infra red (NIR), power anoxygenic photosynthesis, with one photoreaction centre; and chlorophylls (Chl), absorbing in the violet/blue and red (occasionally NIR) power oxygenic photosynthesis, with two photoreaction centres. The accessory (bacterio)chlorophylls add to the spectral range (bandwidth) of photon absorption, e.g., in algae living at depth in clear oceanic water and in algae and photosynthetic (PS) bacteria in microbial mats. Organism size, via the package effect, determines the photon absorption benefit of the costs of synthesis of the pigment-protein complexes. There are unresolved issues as to the evolution of Chls vs. BChls and the role of violet/blue and NIR radiation in PS bacteria., A. W. D. Larkum, R. J. Ritchie, J. A. Raven., and Obsahuje bibliografické odkazy
a1_Shallow ponds with rapidly photosynthesising cyanobacteria or eukaryotic algae are used for growing biotechnology feedstock and have been proposed for biofuel production but a credible model to predict the productivity of a column of phytoplankton in such ponds is lacking. Oxygen electrodes and Pulse Amplitude Modulation (PAM) fluorometer technology were used to measure gross photosynthesis (PG) vs. irradiance (E) curves (PG vs. E curves) in Chlorella (chlorophyta), Dunaliella salina (chlorophyta) and Phaeodactylum (bacillariophyta). PG vs. E curves were fitted to the waiting-in-line function [PG = (PGmax × E/Eopt) × exp(1 — E/Eopt)]. Attenuation of incident light with depth could then be used to model PG vs. E curves to describe PG vs. depth in pond cultures of uniformly distributed planktonic algae. Respiratory data (by
O2-electrode) allowed net photosynthesis (PN) of algal ponds to be modelled with depth. Photoinhibition of photosynthesis at the pond surface reduced PN of the water column. Calculated optimum depths for the algal ponds were: Phaeodactylum, 63 mm; Dunaliella, 71 mm and Chlorella, 87 mm. Irradiance at this depth is ≈ 5 to 10 μmol m-2 s-1 photosynthetic photon flux density (PPFD). This knowledge can then be used to optimise the pond depth. The total net P N [μmol(O2) m-2 s-1] were: Chlorella, ≈ 12.6 ± 0.76; Dunaliella, ≈ 6.5 ± 0.41; Phaeodactylum ≈ 6.1 ± 0.35. Snell’s and Fresnel’s laws were used to correct irradiance for reflection and refraction and thus estimate the time course of PN over the course of a day taking into account respiration during the day and at night. The optimum PN of a pond adjusted to be of optimal depth (0.1-0.5 m) should be approximately constant because increasing the cell density will proportionally reduce the optimum depth of the pond and vice versa., a2_Net photosynthesis for an optimised pond located at the tropic of Cancer would be [in t(C) ha-1 y-1]: Chlorella, ≈ 14.1 ± 0.66; Dunaliella, ≈ 5.48 ± 0.39; Phaeodactylum, ≈ 6.58 ± 0.42 but such calculations do not take weather, such as cloud cover, and temperature, into account., R. J. Ritchie, A. W. D. Larkum., and Obsahuje bibliografii a dodatky