The MLASK corpus consists of 41,243 multi-modal documents – video-based news articles in the Czech language – collected from Novinky.cz (https://www.novinky.cz/) and Seznam Zprávy (https://www.seznamzpravy.cz/). It was introduced in "MLASK: Multimodal Summarization of Video-based News Articles" (Krubiński & Pecina, EACL 2023). The articles' publication dates range from September 2016 to February 2022.
The intended use case of the dataset is to model the task of multimodal summarization with multimodal output: based on a pair of a textual article and a short video, a textual summary is generated, and a single frame from the video is chosen as a pictorial summary.
Each document consists of the following:
- a .mp4 video
- a single image (cover picture)
- the article's text
- the article's summary
- the article's title
- the article's publication date
All of the videos are re-sampled to 25 fps and resized to the same resolution of 1280x720p. The maximum length of the video is 5 minutes, and the shortest one is 7 seconds. The average video duration is 86 seconds.
The quantitative statistics of the lengths of titles, abstracts, and full texts (measured in the number of tokens) are below. Q1 and Q3 denote the first and third quartiles, respectively.
/ - / mean / Q1 / Median / Q3 /
/ Title / 11.16 ± 2.78 / 9 / 11 / 13 /
/ Abstract / 33.40 ± 13.86 / 22 / 32 / 43 /
/ Article / 276.96 ± 191.74 / 154 / 231 / 343 /
The proposed training/dev/test split follows the chronological ordering based on publication data. We use the articles published in the first half (Jan-Jun) of 2021 for validation (2,482 instances) and the ones published in the second half (Jul-Dec) of 2021 and the beginning (Jan-Feb) of 2022 for testing (2,652 instances). The remaining data is used for training (36,109 instances).
The textual data is shared as a single .tsv file. The visual data (video+image) is shared as a single archive for validation and test splits, and the one from the training split is partitioned based on the publication date.
This is the first release of the UFAL Parallel Corpus of North Levantine, compiled by the Institute of Formal and Applied Linguistics (ÚFAL) at Charles University within the Welcome project (https://welcome-h2020.eu/). The corpus consists of 120,600 multiparallel sentences in English, French, German, Greek, Spanish, and Standard Arabic selected from the OpenSubtitles2018 corpus [1] and manually translated into the North Levantine Arabic language. The corpus was created for the purpose of training machine translation for North Levantine and the other languages.
The corpus contains recordings by the native speakers of the North Levantine Arabic (apc) acquired during 2020, 2021, and 2023 in Prague, Paris, Kabardia, and St. Petersburg. Altogether, there were 13 speakers (9 male and 4 female, aged 1x 15-20, 7x 20-30, 4x 30-40, and 1x 40-50).
The recordings contain both monologues and dialogues on the topics of everyday life (health, education, family life, sports, culture) as well as information on both host countries (living abroad) and country of origin (Syria traditions, education system, etc.). Both types are spontaneous, the participants were given only the general subject and talked on the topic or discussed it freely. The transcription and translation team consisted of students of Arabic at Charles University, with an additional quality check provided by the native speakers of the dialect.
The textual data is split between the (parallel) transcriptions (.apc) and translations (.eng), with one segment per line. The additional .yaml file provides mapping to the corresponding audio file (with the duration and offset in the "%S.%03d" format, i.e., seconds and milliseconds) and a unique speaker ID.
The audio data is shared in the 48kHz .wav format, with dialogues and monologues in separate folders. All of the recordings are mono, with a single channel. For dialogues, there is a separate file for each speaker, e.g., "Tar_13052022_Czechia-01.wav" and "Tar_13052022_Czechia-02.wav".
The data provided in this repository corresponds to the validation split of the dialectal Arabic to English shared task hosted at the 21st edition of the International Conference on Spoken Language Translation, i.e., IWSLT 2024.
The corpus contains recordings by the native speakers of the North Levantine Arabic (apc) acquired during 2020, 2021, and 2023 in Prague, Paris, Kabardia, and St. Petersburg. Altogether, there were 13 speakers (9 male and 4 female, aged 1x 15-20, 7x 20-30, 4x 30-40, and 1x 40-50).
The recordings contain both monologues and dialogues on the topics of everyday life (health, education, family life, sports, culture) as well as information on both host countries (living abroad) and country of origin (Syria traditions, education system, etc.). Both types are spontaneous, the participants were given only the general subject and talked on the topic or discussed it freely. The transcription and translation team consisted of students of Arabic at Charles University, with an additional quality check provided by the native speakers of the dialect.
The textual data is split between the (parallel) transcriptions (.apc) and translations (.eng), with one segment per line. The additional .yaml file provides mapping to the corresponding audio file (with the duration and offset in the "%S.%03d" format, i.e., seconds and milliseconds) and a unique speaker ID.
The audio data is shared in the 48kHz .wav format, with dialogues and monologues in separate folders. All of the recordings are mono, with a single channel. For dialogues, there is a separate file for each speaker, e.g., "16072022_Family-01.wav" and "16072022_Family-02.wav".
The data provided in this repository corresponds to the test split of the dialectal Arabic to English shared task hosted at the 21st edition of the International Conference on Spoken Language Translation, i.e., IWSLT 2024.