Ultrasonic velocity anisotropy in the rock provides information of variability of the dynamic elastic moduli. Young’s modulus and Poisson’s ratio calculated from waves velocities can be used to determine brittleness index, which is usually used to predict rock susceptibility for hydraulic fracturing. This paper describes laboratory ultrasonic measurements carried out in order to improve hydraulic fracturing designing. The research was conducted over two types of rock: shale and limestone. The samples were cut out perpendicularly and parallel to the bedding planes. Next they were tested for effective porosity and mineral composition using XRD method. Directionally depended seismic velocities revealed noticeable anisotropy of laminated shale, caused by orientation of the bedding planes and weak anisotropy of limestone. Based on the velocities, dynamic elastic moduli and its anisotropy coefficients were determined. Calculations of brittleness index based on Young’s modulus to Poisson’s ratio relation and three types of mineral composition brittleness indexes, revealed strong variability in brittleness for both kind of tested formations. These results show, that different types of brittleness indexes should be used complementary, to better describe fracability of the rock. and Moska Rafal, Kasza Piotr, Maslowski Mateusz.
This paper presents the subject related to the technology of creating fractures into a rock, as well as the subject related to the effect of the proppant embedment phenomenon on the effective packed fracture in a reservoir rock. This phenomenon occurs after the performed hydraulic fracturing treatment of hydrocarbon reservoirs, during closing of the rock mass. A key part of this experiment was to investigate the depth of proppant grains penetration into the fracture wall (shale rock) and size of damage to the fracture wall surface. The embedment phenomena effects on decrease in the width fracture packed with proppant. The tests were performed for shale rock initially soaked with fracturing fluid, lightweight ceramic proppant grains with a grain size of 0.600÷0.300 mm (medium diameter of proppant grains of 0.450 mm), low surface concentration of proppant of 2.44 kg/m2. Time of exposure of proppant grains to compressive stress of a value 48.3 MPa for 6 hours at 70 oC. Test results indicate that the developed testing methodology may be used for corrected evaluation of the fracturing fluid as well as proppant in hydraulic fracturing treatment of unconventional reservoirs, especially shale rocks. and Maslowski Mateusz, Kasza Piotr, Wilk Klaudia.