Brassinosteroids (BRs) have been reported to counteract various stresses. We investigated effects of exogenously applied brassinosteroid, 24-epibrassinolide (EBR), and brassinosteroid-mimic compound, 7,8-dihydro-8α-20-hydroxyecdysone (DHECD), on the photosynthetic efficiency and yield of rice (Oryza sativa L. cv. Pathum Thani 1) under heat stress. Solutions (1 nM) of EBR and DHECD were separately sprayed onto foliage of individual rice plants during their reproductive stage. Five days after the application, the plants were transferred to the day/night temperature regime of 40/30°C for 7 days and then allowed to recover at normal temperature for 7 days. We demonstrated that both DHECD and EBR helped maintain the net photosynthetic rate. The DHECD and EBR application enhanced stomatal conductance, stomatal limitation, and water-use efficiency under the high-temperature regime. DHECD- and EBR-treated plants showed an increase in the nonphotochemical quenching that was lower than that in the control plants. Moreover, DHECD and EBR treatments maintained the maximal quantum efficiency of PSII photochemistry and the efficiency of excitation capture of the open PSII center. Furthermore, the treatments with DHECD or EBR resulted in higher chlorophyll content during the heat treatment compared with the control plants. The paddy field application of 1 nM EBR and/or 1 nM DHECD at the reproductive stage during the hot season could increase the rice yield, especially, the number of filled seeds. DHECD and EBR enhanced total soluble sugar and reducing sugar in straw and more starch was accumulated in rice seeds. Consequently, our results confirmed that DHECD showed biological activities mimicking EBR in the improvement of photosynthetic efficiency and in rising the rice yield under heat stress., J. Thussagunpanit, K. Jutamanee, W. Sonjaroon, L. Kaveeta,
W. Chai-Arree, P. Pankean, A. Suksamrarn., and Obsahuje bibliografii
Excess solar radiation under hot climate can lead to decline in photosynthetic activity with detrimental effects on growth and yield. The aim of this study was to evaluate the use of a transparent plastic roof as shading for diurnal changes in photosynthetic gas exchange, chlorophyll fluorescence, fruit set and quality of mango (Mangifera indica L.) cv. 'Nam Dok Mai' growth in the field conditions. Fully expanded leaves were examined either shaded by the plastic roof or sunlit under natural conditions. Leaf temperature and leaf-to-air vapour pressure deficit of the shaded leaves measured on the clear day were lowered compared to those of the sunlit leaves. It resulted in increased stomatal conductance and photosynthetic rates of the shaded leaves compared to those of the sunlit leaves, especially from the morning to midday. Furthermore, the reversible decrease of the maximal quantum yield of PSII was more pronounced in the sunlit leaves than that in the shaded ones. Shading increased the total fruit number; the shaded fruits developed better external color than that of the sun-exposed fruits. Our results indicated that shading could maintain the high photosynthetic activity by reducing stomatal limitations for carbon supply and was effective in alleviating the photoinhibitory damage to PSII during bright and clear days with excessive radiation. Finally, shading could increase the number of fruits and improve mango peel color., K. Jutamanee, S. Onnom., and Obsahuje bibliografii