The aim of this study was to investigate the effects of melatonin on oxidative stress, the expression of transient receptor potential melastatin-2 (TRPM2) in guinea pig brains, and the influence of melatonin on oxidative stress in lungs and airway inflammation induced by particulate matter 2.5 (PM2.5). A particle suspension (0.1 g/ml) was nasally administered to the guinea pigs to prepare a PM2.5 exposure model. Cough frequency and cough incubation period were determined through RM6240B biological signal collection and disposal system. Oxidative stress markers, including malondialdehyde (MDA), total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px), in the medulla oblongata were examined through spectrophotometer. Reactive oxygen species (ROS) were detected in the hypoglossal nucleus, cuneate nucleus, Botzinger complex, dorsal vagal complex, and airway through dihydroethidium fluorescence. Hematoxylin-eosin (HE) staining and substance P expression via immunohistochemistry revealed the inflammatory levels in the airway. TRPM2 was observed in the medulla oblongata through immunofluorescence and Western blot. The ultrastructure of the blood-brain barrier and neuronal mitochondria was determined by using a transmission electron microscope. Our study suggests that melatonin treatment decreased PM2.5-induced oxidative stress level in the brains and lungs and relieved airway inflammation and chronic cough. TRPM2 might participate in oxidative stress in the cough center by regulating cough., Z. Ji, Z. Wang, Z. Chen, H. Jin, C. Chen, S. Chai, H. Lv, L. Yang, Y. Hu, R. Dong, K. Lai., and Seznam literatury
Electric stimulation (ES) could induce contraction of intestinal smooth muscle. The aim of this study was to analyze the effects of ES on esophageal motility and the underlying mechanism in vivo. Twenty-eight rabbits were equipped with a pair of subserosa electrodes (connected to an electrical stimulator) in the lower segment of the esophagus. The ES signal consisted of bipolar rectangular pulse trains, lasting for 3 s, with different amplitudes (1 mA, 3 mA, 5 mA and 10 mA), and frequencies (10 Hz, 20 Hz and 50 Hz). The amplitude of the contraction was recognized by high-resolution manometry. The effect of ES was tested under anesthesia and following administration of atropine, phentolamine or L-NAME. ES induced esophageal contraction at the stimulated site. A statistically significant increase in esophageal pressure was observed when the stimulation amplitude was above 3 mA. The increase in esophageal pressure was associated with the amplitude of stimulus as well as the frequency. During stimulation, atropine, phentolamine and L-NAME had no effect on the increase of esophageal pressure induced by ES. These findings implied that ES induced esophageal contraction were not mediated via the NANC, adrenergic or cholinergic pathway. The amplitude of esophageal contraction was current and frequency dependent., L. Zhang, W. Zhao, C. Zhao, H. Jin, B. Wang, B. Wang., and Seznam literatury