The study examined the morphological and long-term behavioral impacts of neonatal hypoxic-ischemic brain injury in a mouse model. We investigated the modification of different behavioral domains, such as spontaneous climbing, which represents fine motor skills. We also focused on sex-dependent differences during hypoxic-ischemic encephalopathy. The Rice-Vannucci model of hypoxia-ischemia was used, adjusted and adapted to 7-day-old C57BL/6NTac mice. The effects of induced hypoxia and ischemia were also studied separately. At postnatal day 60, mice underwent behavioral testing using the LABORAS apparatus. The perfusion for histological evaluation was performed one day after the behavioral analyses. In groups with separately induced hypoxia or ischemia, the observed alterations in behavior were not accompanied by morphological changes in the cortex or hippocampal formation. Female mice naturally climbed significantly more and hypoxic females reared less than hypoxic males (p<0.05). Male mice postnatally exposed to hypoxiaischemia exhibited significantly lower vertical activity and higher horizontal activity (p<0.05). Mild hypoxic damage may not be morphologically detectable but may induce substantial behavioral changes in adult mice. There were significant differences between horizontal and vertical activity in reaction to hypoxiaischemia. Our study indicates that the importance of behavioral testing is irreplaceable and may be reflected in neonatal medicine.
Neonatal hypoxic-ischemic encephalopathy is a disorder with heterogeneous manifestation due to asphyxia during perinatal period. It affects approximately 3-12 children per 1000 live births and cause death of 1 million neonates worldwide per year. Besides, motor disabilities, seizures, impaired muscle tone and epilepsy are few of the consequences of hypoxic-ischemic encephalopathy. Despite an extensive research effort regarding various treatment strategies, therapeutic hypothermia with intensive care unit supportive treatment remains the only approved method for neonates who have suffered from moderate to severe hypoxicischemic encephalopathy. However, these protocols are only partially effective given that many infants still suffer from severe brain damage. Thus, further research to systematically test promising neuroprotective treatments in combination with hypothermia is essential. In this review, we discussed the pathophysiology of hypoxic-ischemic encephalopathy and delved into different promising treatment modalities, such as melatonin and erythropoietin. However, preclinical studies and clinical trials are still needed to further elucidate the mechanisms of action of these modalities.