The aim of this study was to determine the effect of chronic crowding on the cardiovascular system of Wistar-Kyoto (WKY) rats. Rats were randomly divided into the control (480 cm2 per rat) or crowded (200 cm2 per rat) group for eight weeks. Body weight, blood pressure (BP), heart rate and plasma nitrate/nitrite levels of the crowded rats were not different from controls at the end of the experiment. Plasma corticosterone exhibited an increasing trend (5.7±1.8 vs. 12.6±3.7 ng/ml, p=0.08) while blood glucose was significantly reduced in the crowded rats in comparison with the controls. Nitric oxide (NO) synthase activity and nitrate/nitrite levels of the crowded rats were significantly elevated in the aorta by ∼80 % and ∼20 %, respectively, but unchanged in the left ventricle. Moreover, acetylcholine-induced relaxation was significantly increased in the crowded rats in both the femoral artery (61±5 % vs. 76±5 %, p<0.001) and mesenteric artery (51±6 % vs. 72±7 %, p<0.001). In conclusion, results suggest that chronic crowding may increase vasorelaxation and vascular NO production in normotensive rats. This may be considered as an adapting mechanism preventing the development of the stress-related elevation of BP. Additionally, results also suggest caution in the housing of rats because an inappropriate crowding may affect results of the experiment significantly., I. Bernátová, A. Púzserová, J. Navarová, Z. Csizmadiová, M. Zeman., and Obsahuje bibliografii a bibliografické odkazy
Previous data suggest that type 1 diabetes mellitus leads to the deterioration of myocardial intercellular communication mediated by connexin-43 (Cx43) channels. We therefore aimed to explore Cx43, PKC signaling and ultrastructure in non -treated and omega-3 fatty acid (omega-3) treated spontaneously diabetic Goto-Kakizaki (GK) rats considered as type 2 diabetes model. Four-week-old GK and non-diabetic Wistar-Clea rats were fed omega -3 (200 mg/kg/day) for 2 months and compared with untreated rats. Realtime PCR and immunoblotting were performed to determine Cx43, PKC- epsilon and PKC-delta expression. In situ Cx43 was examined by immunohistochemistry and subcellular alterations by electr on microscopy. Omega-3 intake reduced blood glucose, triglycerides, and cholesterol in diabetic rats and this was associated with improved integrity of cardiomyocytes and capillaries in the heart. Myocardial Cx43 mRNA and protein levels were higher in diab etic versus non- diabetic rats and were further enhanced by omega-3. The ratio of phosphorylated (functional) to non-phosphorylated Cx43 was lower in diabetic compared to non- diabetic rats but was increased by omega-3, in part due to up -regulation of PKC-epsilon. In addition, proapoptotic PKC-delta expression was decreased. In conclusion, spontaneously diabetic rats at an early stage of disease benefit from omega-3 intake due to its hypoglycemic effect, upregulation of myocardial Cx43, and preservation of cardiovascular ultrastructure. These findings indicates that supplementation of omega-3 may be beneficial also in the management of diabetes in humans., J. Radosinska, L. H. Kurahara, K. Hiraishi, C. Viczenczova, T. Egan Benova, B. Szeiffova Bacova, V: Dosenko, J. Navarova, B. Obsitnik, I. Imanaga, T. Soukup, N. Tribulova., and Obsahuje bibliografii
Omega-3 fatty acids (Ω3FA) are known to reduce hypertriglyceridemia- and inflammation-induced vascular wall diseases. However, mechanisms of their effects are not completely clear. We examined, whether 10-day Ω3FA diet can reduce bacterial lipopolysaccharide-induced changes in expression of gap junction protein connexin40 (Cx40) in the aorta of hereditary hypertriglyceridemic (hHTG) rats. After administration of a single dose of lipopolysaccharide (LPS, 1 mg/kg, i.p.) to adult hHTG rats, animals were fed with Ω3FA diet (30 mg/kg/day) for 10 days. LPS decreased Cx40 expression that was associated with reduced acetylcholine-induced relaxation of aorta. Ω3FA administration to LPS rats had partial anti-inflammatory effects, associated with increased Cx40 expression and improved endothelium dependent relaxation of the aorta. Our results suggest that 10-day Ω3FA diet could protect endothelium-dependent relaxation of the aorta of hHTG rats against LPS-induced damage through the modulation of endothelial Cx40 expression, K. Frimmel, R. Sotníková, J. Navarová, I. Bernátová, J. Križák, Z. Haviarová, B. Kura, J. Slezák, Ľ. Okruhlicová., and Obsahuje bibliografii