Prestel introduced a generalization of the notion of an ordering of a field, which is called a semiordering. Prestel’s axioms for a semiordered field differ from the usual (Artin-Schreier) postulates in requiring only the closedness of the domain of positivity under $x \rightarrow x a^2$ for nonzero $a$, instead of requiring that positive elements have a positive product. In this work, this type of ordering is studied in the case of a division ring. It is shown that it actually behaves the same as in the commutative case. Further, it is shown that the bounded subring associated with that ordering is a valuation ring which is preserved under conjugation, so one can associate a natural valuation to a semiordering.