We give characterizations of the distributional derivatives $D^{1,1}$, $D^{1,0}$, $D^{0,1}$ of functions of two variables of locally finite variation. Then we use these results to prove the existence theorem for the hyperbolic equation with a nonhomogeneous term containing the distributional derivative determined by an additive function of an interval of finite variation. An application of the above theorem to a hyperbolic equation with an impulse effect is also given.
We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak σ-additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a σ-additive term-we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures., Dariusz Idczak., and Obsahuje bibliografii