Sargassum fusiforme, a species of brown seaweed with economic importance, inhabits lower intertidal zones where algae are often exposed to various stresses. In this study, changes in the photosynthetic performance of S. fusiforme under saline stress were investigated. The PSII performance in S. fusiforme significantly improved, when the thalli were exposed to 0% salinity, and remained high with prolonging treatment time. In contrast, the PSII activity declined considerably under salinities of 4.5 and 6%. The PSI activity did not change remarkably under saline stress, thus demonstrating higher tolerance to saline stress than PSII. In addition, the PSI activity could be also restored after saline treatments, when PSII was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. It might be as a result of changes in the NAD(P)H content in the thalli under saline stress. Our results suggested that PSI was much more tolerant to different saline stress than PSII in S. fusiforme. We demonstrated that S. fusiforme was much more tolerant to hyposaline than to hypersaline stress., S. Gao, L. Huan, X.-P. Lu, W.-H. Jin, X.-L. Wang, M.-J. Wu, G.-C. Wang., and Seznam literatury
Gloiopeltis furcata (Postels & Ruprecht) J. Agardh, a macroalga, which grows in an upper, intertidal zone, can withstand drastic environmental changes caused by the periodic tides. In this study, the photosynthetic and morphological characteristics of G. furcata were investigated. The photosynthetic performance and electron flows of the thalli showed significant variations in response to desiccation and salinity compared with the control group. Both PSII and PSI activities declined gradually when the thalli were under stress. However, the electron transport rate of PSI showed still a low value during severe conditions, while the rate of PSII approached zero. Furthermore, PSI activity of the treated thalli recovered faster than PSII after being submerged in seawater. Even though the linear electron flow was inhibited by DCMU [3-(3, 4-dichlorophenyl)-1,1-dimethylurea], the cyclic electron flow could still be restored. The rate of cyclic electron flow recovery declined with the increasing time of dark treatment, which suggested that stromal reductants from starch degradation played an important role in the donation of electrons to PSI. This study demonstrated that PSII was more sensitive than PSI to desiccation and salinity in G. furcata and that the cyclic electron flow around PSI played a significant physiological role. In addition, G. furcata had branches, which were hollow inside and contained considerable quantities of funoran. These might be the most important factors in allowing G. furcata to adapt to adverse intertidal environments., L. Huan, S. Gao, X. J. Xie, W. R. Tao, G. H. Pan, B. Y. Zhang, J. F. Niu, A. P. Lin, L. W. He, G. C. Wang., and Obsahuje bibliografii