The common bean (Phaseolus vulgaris L.) is sensitive to high temperature, while an ecologically contrasting species (Phaseolus acutifolius A. Gray) is cultivated successfully in hot environments. In this study, the two bean species were respectively acclimated to a control temperature of 25 °C and a moderately elevated temperature of 35 °C in order to compare the thermotolerance capabilities of their photosynthetic light reactions. Growth at 35 °C appeared to have no obvious adverse effect on the photosynthetic activities of the two beans, but changed their thermotolerance. After a short period of heat shock (40 °C for up to 4 h), the photosynthetic activities of 25 °C-grown P. vulgaris declined more severely than those of P. acutifolius grown at 25 °C, implying that the basal thermotolerance of P. vulgaris is inferior to that of P. acutifolius. But after acclimating to 35 °C, the thermotolerances of the two species were both greatly enhanced to about the same level, clearly demonstrating the induction of acquired thermotolerance in their chloroplasts, and P. vulgaris could be as good as P. acutifolius. Temperature acclimation also changed plants' resistance to photoinhibition in a manner similar to those toward heat stress. In addition, acquisition of tolerance to heat and strong irradiance would reduce the dependency of the two beans on xanthophyll pigments to dissipate heat, and also seemed irrelevant to the agents with antioxidant activities such as SOD. and C. M. Tsai, B. D. Hsu.