Snow accumulation and melt are highly variable. Therefore, correct modeling of spatial variability of the snowmelt, timing and magnitude of catchment runoff still represents a challenge in mountain catchments for flood forecasting. The article presents the setup and results of detailed field measurements of snow related characteristics in a mountain microcatchment (area 59 000 m2 , mean altitude 1509 m a. s. l.) in the Western Tatra Mountains, Slovakia obtained in winter 2015. Snow water equivalent (SWE) measurements at 27 points documented a very large spatial variability through the entire winter. For instance, range of the SWE values exceeded 500 mm at the end of the accumulation period (March 2015). Simple snow lysimeters indicated that variability of snowmelt and discharge measured at the catchment outlet corresponded well with the rise of air temperature above 0°C. Temperature measurements at soil surface were used to identify the snow cover duration at particular points. Snow melt duration was related to spatial distribution of snow cover and spatial patterns of snow radiation. Obtained data together with standard climatic data (precipitation and air temperature) were used to calibrate and validate the spatially distributed hydrological model MIKE-SHE. The spatial redistribution of input precipitation seems to be important for modeling even on such a small scale. Acceptable simulation of snow water equivalents and snow duration does not guarantee correct simulation of peakflow at shorttime (hourly) scale required for example in flood forecasting. Temporal variability of the stream discharge during the snowmelt period was simulated correctly, but the simulated discharge was overestimated.
Stony soils are composed of two fractions (rock fragments and fine soil) with different hydrophysical characteristics. Although stony soils are abundant in many catchments, their properties are still not well understood. This manuscript presents an application of the simple methodology for deriving water retention properties of stony soils, taking into account a correction for the soil stoniness. Variations in the water retention of the fine soil fraction and its impact on both the soil water storage and the bottom boundary fluxes are studied as well. The deterministic water flow model HYDRUS-1D is used in the study. The results indicate that the presence of rock fragments in a moderate-to-high stony soil can decrease the soil water storage by 23% or more and affect the soil water dynamics. Simulated bottom fluxes increased or decreased faster, and their maxima during the wet period were larger in the stony soil compared to the non-stony one.