We analyzed the immune response to gliadin in suckling rats and rats hand-fed with an artificial milk formula, an animal model of gluten enteropathy. Animals of both groups were intragastrically given either gliadin or albumin (control animals) or gliadin from birth till day 55. When compared to the controls, spleen lymphocytes from both groups of gliadin-treated rats cultivated in vitro exhibited a significant increase of spontaneous 3H-thymidine incorporation. Moreover, the proliferation of spleen and mesenteric lymph node (MLN) lymhocytes from both groups of gliadin-treated suckling and hand-fed rats was specifically increased by the in vitro gliadin challenge. Spleen B cells from gliadin-treated rats spontaneously produced higher amounts of gliadin-specific antibodies than those from the controls, however, in vitro stimulation by gliadin caused no further increase in antibody production. Apoptotic DNA fragmentation in MLN cells was higher in gliadin-treated rats than in albumin-treated ones, independently of the milk diet during the suckling period., H. Kozáková, R. Štěpánková, L. Tučková, M. Šinkora, L. Jelínková, H. Tlaskalová-Hogenová., and Obsahuje bibliografii
This study was aimed to evaluate the role of commensal Gram-negative bacterium Bacteroides ovatus in murine model of chronic intestinal inflammation. The attempt to induce chronic colitis was done in Bacteroides ovatus-monoassociated, germ-free and conventional mice either in immunocompetent (BALB/c) mice or in mice with severe combined immunodeficiency (SCID), using 2.5 % dextran-sodium sulfate (DSS) in drinking water (7 days DSS, 7 days water, 7 days DSS). Conventional mice developed chronic colitis. Some of germ-free BALB/c and the majority of germ-free SCID mice did not survive the long-term treatment with DSS due to massive bleeding into the intestinal lumen. However, monocolonization of germ-free mice of both strains with Bacteroides ovatus prior to long-term treatment with DSS protected mice from bleeding, development of intestinal inflammation and precocious death. We observed that though DSS-treated Bacteroides ovatus-colonized SCID mice showed minor morphological changes in colon tissue, jejunal brush-border enzyme activities such as γ-glutamyltranspeptidase, lactase and alkaline phosphatase were significantly reduced in comparison with DSS-untreated Bacteroides ovatus-colonized mice. This modulation of the enterocyte γ-glutamyltranspeptidase localized to the brush border membrane has been described for the first time. This enzyme is known to reflect an imbalance between pro-oxidant and anti-oxidant mechanisms, which could be involved in protective effects of colonization of germ-free mice with Bacteroides ovatus against DSS injury., T. Hudcovic ... [et al.]., and Obsahuje seznam literatury
Impairment of mucosal barrier integrity of small intestine might be causative in immune-mediated gastrointestinal diseases. We tested the markers of epithelial apoptosis – cytokeratin 18 caspase-cleaved fragment (cCK-18), and enterocyte damage – intestinal fatty acid-binding protein (I-FABP) and soluble CD14 (sCD14) in sera of patients with untreated celiac disease (CLD), those on gluten-free diet (CLD-GFD), patients with autoimmune diabetes mellitus (T1D), T1D with insulitis (T1D/INS), and diabetes mellitus type 2 (T2D). We found elevated levels of cCK-18 (P<0.001), I-FABP (P<0.01) and sCD14 (P<0.05) in CLD when compared to healthy controls. However, the levels of cCK-18 (P<0.01) and I-FABP (P<0.01) in CLD-GFD were higher when compared with controls. Interestingly, elevated levels of cCK-18 and I-FABP were found in T2D and T1D (P<0.001), and T1D/INS (P<0.01, P<0.001). Twenty-two out of 43 CLD patients were seropositive for cCK-18, 19/43 for I-FABP and 11/43 for sCD14; 9/30 of T2D patients were positive for cCK-18 and 5/20 of T1D/INS for sCD14, while in controls only 3/41 were positive for cCK-18, 3/41 for I-FABP and 1/41 for sCD14. We documented for the first time seropositivity for sCD14 in CLD and potential usefulness of serum cCK-18 and I-FABP as markers of gut damage in CLD, CLD-GFD, and diabetes., I. Hoffmanová, D. Sánchez, V. Hábová, M. Anděl, L. Tučková, H. Tlaskalová-Hogenová., and Obsahuje bibliografii