We report here the in vitro measurements of nitric oxide in the cardiovascular system using a porphyrinic sensor specific for NO. Nitric oxide concentrations were measured directly in different parts of the heart and also in different arteries and veins, ranging from 100 /um to 5 mm in diameter. Highest NO * concentrations were found in the heart and particularly in the areas of aortic and pulmonary valves. The NO * concentration in the arteries was higher than in the veins. A clearcut positive correlation was obtained by plotting the vessel diameter and production of nitric oxide.
Our study concerned the findings that rat and rabbit heart transplants do not survive after six hours. They become dark, hard and fail to contract within 2 min after reperfusion and never regain their function. We tested the supplementation of solutions for heart transplant preservation with tetrahydrobiopterin (H4B) and L-arginine (L-ARG) to maintain the oxidative and reductive domains of the endocardial NO synthase. We decided to study the excised rabbit hearts preserved in Hank’s balanced salt solution (HBSS) at 0 °C supplemented with different concentrations of H4B (0, 1, 5, 10 or 100 /¿M). At desired time intervals, successive pieces stored in the above solutions were warmed to rabbit body temperature in 4 ml of HBSS and maximally agonized by direct application of 20 l of 200 M bradykinin (or other agonist) onto the exposed endocardium. Nitric oxide bursts were monitored with a porphyrinic NO sensor lying on the exposed endocardium. Our goal was to find the lowest H4B concentration which would maximally agonize NO * and prolong the time of heart preservation to more than 6 hours. Ten /iM are a minimum H4B concentration which achieves maximum prolongation of heart preservation time up to 90 hours. This effect was based upon maximal potentiation of NO* release and minimizing of superoxide production.