The Jahamah Platform is a part of a structural depression called the Sirt basin, located in the northern central part of Libya. The Jahamah Platform spans latitude 〖29.95〗^° N to 〖30.55〗^° N and longitudes 〖19.32〗^° E to 〖19.77〗^° E with an estimated area of about 2,187 km2. Libyan Petroleum Institute provided the data of aeromagnetic that was used in this study. The data was used to study the structure beneath the Jahamah Platform by using Oasis montaj software. Various filters from the software have been applied to enhance determining the fault system within the study area. An RTP filter was applied to the magnetic data to construct a reduction to the pole anomaly map. The subsurface structural elements underneath the study area were identified using Total horizontal derivative (THD), CET analysis, and Euler deconvolution. 2-D forward modelling of the area was constructed based on gravity data, and then the basement depth was estimated to range from 2.2 km to 3.1 km based on the model. Based on the interpretation of the constructed maps, the area has a number of faults that trend in NE-SW, NNW-SSE, N-S and NW-SE and faults depth ranging between 790 m to 3102 m.
Integration between magnetic and gravity data at the Zelten platform, the southeast part of Sirt Basin Libya. Zelten Platform is first discovered oil field in Libya. It shows numerous geological structures of different tectonic events. The methods adopted can assist in locating the hidden subsurface structures. The platform is characterized by the NW-SE trending rift that belongs to the Early Cretaceous age (during the collapse of Sirt Arch). The study aimed to define the structural geology that assisted in the development of future exploration in this area. The analyses utilized several filtering and transformation algorithms to help in structural modeling. For instance, the total horizontal gradient and tilt angle derivative were applied for the edge detection of the tectonic boundaries. The results show NW-SE and NNW-SSE patterns that represents faults that controlled the positions of the troughs and platforms at the Sirt basin. On the other hand, Euler deconvolution and 2D forward modeling were utilized to determine the depth of the basement. The Integrated models deduced revealed that the main faults trends are NW-SE which refer to the rift phases and crustal extension period that occurred during the Mesozoic time (early cretaceous). Also, the basement depth ranges from 6.5 km to 8 km according to the structures that affected the study area., Abdelhakim Eshanibli, Amin Khalil, Abdellatif Younis and Hussin Ghanoush., and Obsahuje bibliografii