We study the topology of foliations of close cohomologous Morse forms (smooth closed 1-forms with non-degenerate singularities) on a smooth closed oriented manifold. We show that if a closed form has a compact leave $\gamma $, then any close cohomologous form has a compact leave close to $\gamma $. Then we prove that the set of Morse forms with compactifiable foliations (foliations with no locally dense leaves) is open in a cohomology class, and the number of homologically independent compact leaves does not decrease under small perturbation of the form; moreover, for generic forms (Morse forms with each singular leaf containing a unique singularity; the set of generic forms is dense in the space of closed 1-forms) this number is locally constant.
For a finitely generated group, we study the relations between its rank, the maximal rank of its free quotient, called co-rank (inner rank, cut number), and the maximal rank of its free abelian quotient, called the Betti number. We show that any combination of the group’s rank, co-rank, and Betti number within obvious constraints is realized for some finitely presented group (for Betti number equal to rank, the group can be chosen torsion-free). In addition, we show that the Betti number is additive with respect to the free product and the direct product of groups. Our results are important for the theory of foliations and for manifold topology, where the corresponding notions are related with the cut-number (or genus) and the isotropy index of the manifold, as well as with the operations of connected sum and direct product of manifolds., Irina Gelbukh., and Obsahuje seznam literatury