Phosphorus (P) is one of the limiting mineral nutrient elements in the typical steppe of Inner Mongolia, China. In order to find out the adaptive strategy of Caragana microphylla to low soil P status, we grew plants in P-deficient soil in April 2009 and gave a gradient of P addition ranging from 0 to 60 mg(P) kg-1(soil) from May 2010. Leaf traits were measured in September 2010. Both leaf growth and light-saturated photosynthetic rate (P max) were similar among different groups. Leaf nitrogen (N):P ratio indicated that the growth of C. microphylla was not P-limited in most of the Inner Mongolia typical steppe, which had an average soil available P content equal to 3.61 mg kg-1. The optimal P addition was 20 mg(P) kg-1(soil) for two-year-old plants of C. microphylla. Leaf mass area (LMA) and leaf dry matter content (LDMC) were enhanced with low P, and significantly negatively correlated with photosynthetic N-use efficiency (PNUE). Photosynthetic P-use efficiency (PPUE) increased with decreasing soil P and increasing leaf inorganic
P (Pi): organic P (Po) ratio, and showed no significant negative correlation with LMA or LDMC. P max of C. microphylla did not decline so sharply as it was anticipated. The reason for this phenomenon might be due to the increased PPUE through regulating the leaf total P allocation. C. microphylla had high P-use efficiency via both high PPUE and long P-retention time at low-P supply. The adaptation of C. microphylla to low-P supply provided a new explanation for the increased distribution of the species in the degraded natural grassland in Inner Mongolia, China., T. T. Zhao, N. X. Zhao, Y. B. Gao., and Obsahuje bibliografii
In the order C. microphylla - C. intermedia - C. korshinskii, compensation irradiance, saturation irradiance, and optimum temperature for photosynthesis increased, net photosynthetic rate (PN) at low irradiance and low temperature decreased, optimum air humidity decreased, and PN at low air humidity increased. Daily cumulative value of PN increased while daily cumulative value of transpiration (E) decreased, and hence water use efficiency (WUE =PN/E) increased. Diurnal course of PN of C. microphylla was a double-peak curve, but the second peak in the curves of C. intermedia and C. korshinskii was not visible. These physiological characteristics are biological basis for the geographical distribution of these three Caragana species, and are in relation to water conditions of their habitats and distinctiveness in leaf hair of plant. and C. C. Ma ... [et al.].