Certain aspects of balance control change with age, resulting in a slight postural instability. We examined healthy subjects between 20-82 years of age during the quiet stance under static conditions: at stance on a firm surface and/or on a compliant surface with eyes either open or closed. Body sway was evaluated from centre of foot pressure (CoP) positions during a 50 sec interval. The seven CoP parameters were evaluated to assess quiet stance and were analyzed in three age groups: juniors, middle-aged and seniors. The regression analysis showed evident increase of body sway over 60 years of age. We found that CoP parameters were significantly different when comparing juniors and seniors in all static conditions. The most sensitive view on postural steadiness during quiet stance was provided by CoP amplitude and velocity in AP direction and root mean square (RMS) of statokinesigram. New physiological ranges of RMS parameter in each condition for each age group of healthy subjects were determined. Our results showed that CoP data from force platform in quiet stance may indicate small balance impairment due to age. The determined physiological ranges of RMS will be useful for better distinguishing between small postural instability due to aging in contrast to pathological processes in the human postural control., D. Abrahamová, F. Hlavačka., and Obsahuje bibliografii a bibliografické odkazy
We analyzed human postural responses to muscle vibration applied at four different frequencies to lower leg muscles, the lateral gastrocnemius (GA) or tibialis anterior (TA) muscles. The muscle vibrations induced changes in postural orientation characterized by the center of pressure (CoP) on the force platform surface on which the subjects were standing. Unilateral vibratory stimulation of TA induced body leaning forward and in the direction of the stimulated leg. Unilateral vibration of GA muscles induced body tilting backwards and in the opposite direction of the stimulated leg. The time course of postural responses was similar and started within 1 s after the onset of vibration by a gradual body tilt. When a new slope of the body position was reached, oscillations of body alignment occurred. When the vibrations were discontinued, this was followed by rapid recovery of the initial body position. The relationship between the magnitude of the postural response and frequency of vibration differed between TA and GA. While the magnitude of postural responses to TA vibration increased approximately linearly in the 60-100 Hz range of vibration frequency, the magnitude of response to GA vibration increased linearly only at lower frequencies of 40-60 Hz. The direction of body tilt induced by muscle vibration did not depend on the vibration frequency., A. Polónyová, F. Hlavačka., and Obsahuje bibliografii
To investigate the vestibular and somatosensory interaction in human postural control, a galvanic vestibular stimulation of cosine bell shape resulting in a small forward or backward body lean was paired with three vibrations of both soleus muscles. The induced body lean was registered by the position of the center of foot pressure (CoP). During a quiet stance with eyes closed the vibration of both soleus muscles with frequency (of) 40 Hz, 60 Hz and 80 Hz resulted in the body lean backward with velocities related to the vibration frequencies. The vestibular galvanic stimulation with the head turned to the right caused forward or backward modification of CoP backward response to the soleus muscles vibration and peaked at 1.5-2 s following the onset of the vibration. The effect of the paired stimulation was larger than the summation of the vestibular stimulation during the quiet stance and a leg muscle vibration alone. The enhancement of the galvanic stimulation was related to the velocity of body lean induced by the leg muscle vibration. The galvanic vestibular stimulation during a faster body movement had larger effects than during a slow body lean or the quiet stance. The results suggest that velocity of a body postural movement or incoming proprioceptive signal from postural muscles potentiate the effects of simultaneous vestibular stimulations on posture., O. Dzurková, F. Hlavačka., and Obsahuje bibliografii a bibliografické odkazy